1
|
Mirmosayyeb O, Zivadinov R, Weinstock-Guttman B, Benedict RHB, Jakimovski D. Optical coherence tomography (OCT) measurements and cognitive performance in multiple sclerosis: a systematic review and meta-analysis. J Neurol 2023; 270:1266-1285. [PMID: 36396812 DOI: 10.1007/s00415-022-11449-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Several studies report mixed associations between the retinal nerve fiber layer (RNFL) thickness with cognitive and physical disability in persons with multiple sclerosis (PwMS). Systematic synthesis of these findings is crucial in deriving credible conclusions. METHODS Five databases were searched from their inception to March 2022. The inclusion criteria for studies were MS-specific and required RNFL and cognitive performance data in order to be analyzed. The selection processes followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS The systematic review yielded 31 studies that investigated the association between RNFL thickness and cognitive performance. Twenty-two studies reported positive associations, and nine did not. The meta-analysis included 11 studies with a total of 782 PwMS with mean age of 40.5 years, mean Expanded Disability Status Scale (EDSS) of 2.7, and disease duration of 11.3 years. RNFL thickness was significantly associated Symbol Digit Modalities Test (pooled r = 0.306, p < 0.001), Paced Auditory Serial Addition Test (pooled r = 0.374, p < 0.001) and Word List Generation (WLG, pooled r = 0.177, p < 0.001). RNFL was also significantly correlated with visuospatial learning and memory tests (pooled r = 0.148, p = 0.042) and verbal learning and memory tests (pooled r = 0.245, p = 0.005). Within three eligible studies, no significant association between ganglion cell inner-plexiform layer and SDMT 0.083 (95% CI - 0.186, 0.352) was noted. The heterogeneity was high in all correlation studies (I2 > 63% and p < 0.008) except for the WLG and visuospatial memory findings. CONCLUSION RNFL thickness is associated with cognitive processing speed, verbal learning and memory, visual learning and memory, as well as verbal fluency in PwMS. The number of studies included in the meta-analyses were limited due to non-standardized reporting.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Mossa EAM, Sayed KM, Awny I, Mohamed NA, Ali T, Hemdan SB, Helaly AA, Abdellatif MG, Farag RM, Alsmman AH, Mounir A. Expression of poly(ADP-ribose) polymerase-1 gene and optical coherence tomography angiographic parameters among patients with multiple sclerosis. BMJ Open Ophthalmol 2022. [DOI: 10.1136/bmjophth-2022-001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Back ground/aimsTo analyse different parameters of the macula, disc and their vascular affection using optical coherence tomography (OCT) and angiography (OCT-A) in patients with multiple sclerosis (MS) correlating these changes to PARP-1 gene expression in blood.MethodsThis cross-sectional study included 80 eyes of the clinically diagnosed relapsing-remitting phenotype of MS. The study included three groups; group (A) included 40 eyes of 20 patients with MS with a history of optic neuritis (MS+ON), group (B) included 40 eyes of 20 patients with MS without a history of ON (MS-ON) and group (C) (the control group) consisted of 40 eyes of 20 matched participants not suffering from any ocular or systemic disease. OCT and OCT-A, RTVue (Optovue, Fermont, California, USA) were done for all eyes for evaluating the macular and disc changes. Qualitative real-time PCR for estimation of PARP1 gene expression level was performed for all patients.ResultsPARP-1 gene expression level showed a significant difference in comparing the three groups, with the highest level being for the (ON+) group (p<0.0009). Significant negative correlations were found between PARP-1 gene expression level and central macular thickness, total macular volume and full foveal vessel density thickness. ROC curve constructed by plotting the area under the receiver operating characteristic curve value was (0.9) for PARP-1 gene expression level.ConclusionsPARP-1 may play an important role in the development of the ON cascade in patients with MS and may be a biomarker for diagnosing and a potential molecular target of ON in MS patients’ therapy. In addition to the OCT and OCT-angio changes that could be detected retrospectively, PARP-1 gene expression level could be considered a prospective detector to complete the full-blown picture of MS (ON+) early and prevent blindness.
Collapse
|
3
|
Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare (Basel) 2022; 10:healthcare10081386. [PMID: 35893208 PMCID: PMC9394264 DOI: 10.3390/healthcare10081386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative, potentially disabling disease of the central nervous system. OCT (Optical Coherence Tomography) and OCT-A (Optical Coherence Tomography with Angiography) are imaging techniques for the retina and choroid that are used in the diagnosis and monitoring of ophthalmological conditions. Their use has recently expanded the study of several autoimmune disorders, including MS. Although their application in MS remains unclear, the results seem promising. This review aimed to provide insight into the most recent OCT and OCT-A findings in MS and may function as a reference point for future research. According to the current literature, the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform complex (GC-IPL) are significantly reduced in people with MS and are inversely correlated with disease duration. The use of OCT might help distinguish between MS and neuromyelitis optica spectrum disorders (NMOSD), as the latter presents with more pronounced thinning in both the RNFL and GC-IPL. The OCT-A findings in MS include reduced vessel density in the macula, peripapillary area, or both, and the enlargement of the foveal avascular zone (FAZ) in the setting of optic neuritis. Additionally, OCT-A might be able to detect damage in the very early stages of the disease as well as disease progression in severe cases.
Collapse
|
4
|
Evaluation of Retinal Structure and Optic Nerve Function Changes in Multiple Sclerosis: Longitudinal Study with 1-Year Follow-Up. Neurol Res Int 2021; 2021:5573839. [PMID: 34221503 PMCID: PMC8225456 DOI: 10.1155/2021/5573839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation and demyelination of the central nervous system which often involves the optic nerve even though only 20% of the patients experience optic neuritis (ON). Objective This study aims to compare the retinal structure and optic nerve function between patients with MS and healthy controls (HCs), evaluate optic nerve alterations in MS over 1-year follow-up, and analyze its correlations with disease duration, number of relapses, degree of disability, and different subtypes. Methods This is a prospective cohort study involving 58 eyes of MS patients. Optic nerve function was evaluated with best-corrected visual acuity (BCVA), contrast sensitivity, and P100 latency, while the retinal structure was evaluated from the GCIPL and RNFL thickness measured with optical coherence tomography (OCT) and fundus photography. Results The MS group had lower BCVA (p=0.001), contrast sensitivity (p < 0.001), mean GCIPL thickness (p < 0.001), and mean RNFL thickness (p < 0.001) than HC. At 6 and 12 months of observations, GCIPL and RNFL (nasal quadrant) of MS patients decreased significantly (p=0.007 and p=0.004, respectively). Disease duration and the number of relapses correlated with delayed P100 latency (r = −0.61, p < 0.001 and r = −0.46, p=0.02). GCIPL and RNFL in the SPMS subtype were thinner than in RRMS. Conclusions The retinal structure and optic nerve function of MS patients are worse than those of normal individuals. GCIPL and RNFL thinning occurs at 6 and 12 months but do not correlate with disease duration, the number of relapses, and degree of disability.
Collapse
|
5
|
Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G. Optical coherence tomography angiography in multiple sclerosis: A cross-sectional study. PLoS One 2020; 15:e0236090. [PMID: 32702050 PMCID: PMC7377434 DOI: 10.1371/journal.pone.0236090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/30/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To evaluate retinal axonal density and retinal capillary flow density (CFD) variations in patients affected by multiple sclerosis (MS) as documented by Optical Coherence Tomography Angiography (OCT-A). MATERIAL AND METHODS A cross-sectional study was performed in a tertiary university eye hospital on 94 eyes from 48 MS patients compared to 37 eyes from 23 matched controls. MS patients were divided in two groups: those with previous episodes of optic neuritis (MS ON+, 71.4%) and those without any previous visual complaint (no optic neuritis group, MS ON, 28.6%). Patients underwent macular and optic nerve head OCT-A with Optovue XR Avanti (Optovue, Freemont, California) after that preliminary evaluation of the ganglion cell complex (GCC) and of the retinal nerve fiber layer (RNFL) was achieved for each single eye by SD-OCT. CFD was evaluated in three different retinal layers of MS patients and controls: superficial capillary plexus (SCP), deep capillary plexus (DCP) and the choriocapillaris layer (CL). Each layer was analyzed in 18 preset subregions automatically detected by the system. CFD values were then correlated to the RNFL thickness and GCC thickness in the groups: p values were computed by t-tests between each group of MS patients and controls. A p-value of <0.05 was considered significant. RESULTS A significant difference in the overall CFD values was found between ON+ and ON- patients when compared to controls in 18 subregions of SCP. Furthermore, a significant difference was found between MS patients and controls in 16 subregions analyzed corresponding to the CL layer without difference between the two MS subgroups (ON+ and ON-). CONCLUSIONS OCT-A when performed at the optic nerve head level and at the macular region is characterized by a reduction of retinal perfusion in a significant portion of MS patients independently if they had a previous history of optic nerve inflammation or not.
Collapse
Affiliation(s)
| | - Arturo Carta
- Department of Medicine and Surgery, Ophthalmology Unit, University of Parma, Parma, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center Binaghi Hospital, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center Binaghi Hospital, University of Cagliari, Cagliari, Italy
| | | | - Giacom Diaz
- Biomedical Science Department, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Lambe J, Saidha S, Bermel RA. Optical coherence tomography and multiple sclerosis: Update on clinical application and role in clinical trials. Mult Scler 2019; 26:624-639. [PMID: 32412377 DOI: 10.1177/1352458519872751] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical coherence tomography (OCT) has emerged as a fast, non-invasive, inexpensive, high-resolution imaging technique in multiple sclerosis (MS). Retinal layer quantification by OCT facilitates a 'window' into not only local retinal pathology but also global neurodegenerative processes, recognised to be the principal substrates of disability accumulation in MS. While OCT measures in MS have been demonstrated to reflect visual function, inflammatory activity outside of the visual pathways, disability measures including the prediction of disability progression, whole brain atrophy, and the differential neuroprotective effects of disease-modifying therapies, debate continues regarding the clinical utility of OCT in everyday practice. This review presents an overview of the evidence supporting OCT, with particular focus on its application in the MS clinic. We will also discuss the role of OCT in MS clinical trials to develop novel neuroprotective and potential remyelinating therapies.
Collapse
Affiliation(s)
- Jeffrey Lambe
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Lambe J, Murphy OC, Saidha S. Can Optical Coherence Tomography Be Used to Guide Treatment Decisions in Adult or Pediatric Multiple Sclerosis? Curr Treat Options Neurol 2018; 20:9. [DOI: 10.1007/s11940-018-0493-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Alonso R, Gonzalez-Moron D, Garcea O. Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: A review. Mult Scler Relat Disord 2018; 22:77-82. [PMID: 29605802 DOI: 10.1016/j.msard.2018.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/27/2022]
Abstract
Neurodegeneration is one the most important pathological factors which contributes to permanent disability in multiple sclerosis (MS). Optical coherence tomography (OCT) measurements of macular ganglion cell layer (mGCL) and retinal nerve fiber layer (RNFL) have been proposed as biomarkers of axonal damage in MS. The aim of this review is to describe the most relevant findings regarding OCT and axonal damage in MS. We have selected studies that describe retina impairment in MS patients, and those which quantitatively assess the relationship between OCT and physical disability, cognitive impairment and relationship between OCT and magnetic resonance imaging (MRI). Results show that there is a relationship between the degree of retinal layers reduction and physical or cognitive disability and degenerative changes in MRI.
Collapse
Affiliation(s)
- Ricardo Alonso
- Multiple Sclerosis Clinic, Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina.
| | - Dolores Gonzalez-Moron
- Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina; Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Orlando Garcea
- Multiple Sclerosis Clinic, Department of Neurology, Ramos Mejía Hospital, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kaunzner UW, Al-Kawaz M, Gauthier SA. Defining Disease Activity and Response to Therapy in MS. Curr Treat Options Neurol 2017; 19:20. [PMID: 28451934 DOI: 10.1007/s11940-017-0454-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Disease activity in multiple sclerosis (MS) has classically been defined by the occurrence of new neurological symptoms and the rate of relapses. Definition of disease activity has become more refined with the use of clinical markers, evaluating ambulation, dexterity, and cognition. Magnetic resonance imaging (MRI) has become an important tool in the investigation of disease activity. Number of lesions as well as brain atrophy have been used as surrogate outcome markers in several clinical trials, for which a reduction in these measures is appreciated in most treatment studies. With the increasing availability of new medications, the overall goal is to minimize inflammation to decrease relapse rate and ultimately prevent long-term disability. The aim of this review is to give an overview on commonly used clinical and imaging markers to monitor disease activity in MS, with emphasis on their use in clinical studies, and to give a recommendation on how to utilize these measures in clinical practice for the appropriate assessment of therapeutic response.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, 1305 York Avenue, New York City, NY, 10021, USA
| | - Mais Al-Kawaz
- NewYork Presbyterian, Weill Cornell Medicine, 535 East 68th street, New York City, NY, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, 1305 York Avenue, New York City, NY, 10021, USA.
| |
Collapse
|