1
|
Fang Y, Shen P, Xu L, Shi Y, Wang L, Yang M. PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation. Brain Inj 2024; 38:918-927. [PMID: 38828532 DOI: 10.1080/02699052.2024.2361623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cognitive impairment is a severe complication of acute respiratory distress syndrome (ARDS). Emerging studies have revealed the effects of pyrrolidine dithiocarbamate (PDTC) on improving surgery-induced cognitive impairment. The major aim of the study was to investigate whether PDTC protected against ARDS-induced cognitive dysfunction and to identify the underlying mechanisms involved. METHODS The rat model of ARDS was established by intratracheal instillation of lipopolysaccharide (LPS), followed by treatment with PDTC. The cognitive function of rats was analyzed by the Morris Water Maze, and pro-inflammatory cytokines were assessed by quantitative real-time PCR, enzyme-linked immunosorbent assay, and western blot assays. A dual-luciferase reporter gene assay was performed to identify the relationship between miR-181c and its target gene, TAK1 binding protein 2 (TAB2). RESULTS The results showed that PDTC improved cognitive impairment and alleviated neuroinflammation in the hippocampus in LPS-induced ARDS model. Furthermore, we demonstrated that miR-181c expression was downregulated in the hippocampus of the ARDS rats, which was restored by PDTC treatment. In vitro studies showed that miR-181c alleviated LPS-induced pro-inflammatory response by inhibiting TAB2, a critical molecule in the nuclear factor (NF)-κB signaling pathway. CONCLUSION PDTC improves cognitive impairment in LPS-induced ARDS by regulating miR-181c/NF-κB axis-mediated neuroinflammation, providing a potential opportunity for the treatment of this disease.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunchao Shi
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liyan Wang
- Department of General Practice, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Maoxian Yang
- Department of Intensive Care Unit, The First Hospital of Jiaxing & Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Lacticaseibacillus rhamnosus attenuates acute lung inflammation in a murine model of acute respiratory distress syndrome: Relevance to cytokines associated to STAT4/T-bet and STAT3/RORɣt”. Microb Pathog 2022; 173:105831. [DOI: 10.1016/j.micpath.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
3
|
Ruan D, Wang Y, Li S, Zhang C, Zheng W, Yu C. Nalbuphine alleviates inflammation by down-regulating NF-κB in an acute inflammatory visceral pain rat model. BMC Pharmacol Toxicol 2022; 23:34. [PMID: 35642022 PMCID: PMC9158276 DOI: 10.1186/s40360-022-00573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Nalbuphine can relieve patients’ inflammation response after surgery compared to other opioid drugs. However, its molecular mechanism has not been clear. Activation of NF-κB signaling pathway under oxidative stress and inflammation can maintain pain escalation. Methods We firstly investigated the effect of nalbuphine on writhing test and mechanical allodynia using a rat model of inflammatory visceral pain (acetic acid (AA) administrated). Cytokines (including tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-2, and IL-6 in plasma were tested with ELISA technology. Expression levels of TNF-α, IκBα and p-NF-κB p65 at the spinal cord (L3–5) were measured by western blot or RT-qPCR. Results We found that the paw withdrawal threshold (PWT) values of rats were reduced in the model group, while the numbers of writhing, levels of IL-1β, IL-2, IL-6, and TNF-α in plasma, and p-NF-κB protein and its gene expressions in the lumbar spinal cord were up-regulated. Subcutaneously injection of nalbuphine (10 μg/kg) or PDTC (NF-κB inhibitor) attenuated acetic acid-induced inflammatory pain, and this was associated with reversal of up-regulated IL-1β, IL-2, IL-6, and TNF-α in both plasma and spinal cord. Furthermore, acetic acid increased p-NF-κB and TNF-α protein levels in the white matter of the spinal cord, which was attenuated by nalbuphine. These results suggested that nalbuphine can significantly ameliorate inflammatory pain via modulating the expression of NF-κB p65 as well as inflammation factors level in the spinal cord. Conclusion In conclusion, nalbuphine inhibits inflammation through down-regulating NF-κB pathway at the spinal cord in a rat model of inflammatory visceral pain. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00573-7.
Collapse
Affiliation(s)
- Dijiao Ruan
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sisi Li
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Zhang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenwen Zheng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, 426 Songs North Road, Yubei District, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
4
|
Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, Xu C, Chen H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother 2020; 132:110770. [PMID: 33011613 DOI: 10.1016/j.biopha.2020.110770] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute pancreatitis (SAP), a serious inflammatory disease of the pancreas, can easily lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS). Acute lung injury (ALI) is one of the most serious complications of SAP. However, the specific pathogenesis of SAP-associated ALI is not fully understood. Crosstalk and multi-mechanisms involving pancreatic necrosis, bacteremia, intestinal barrier failure, activation of inflammatory cascades and diffuse alveolar damage is the main reason for the unclear pathological mechanism of SAP-associated ALI. According to previous research on SAP-associated ALI in our laboratory and theories put forward by other scholars, we propose that the complex pattern of SAP-associated ALI is based on the "pancreas-intestine-inflammation/endotoxin-lung (P-I-I/E-L) pathway". In this review, we mainly concentrated on the specific details of the "P-I-I/E-L pathway" and the potential treatments or preventive measures for SAP-associated ALI.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Chukwuemeka Samuel Okoye
- Orthopedic Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, PR China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
5
|
Zhang ZM, Wang YC, Chen L, Li Z. Protective effects of the suppressed NF-κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat with acute lung injury. Kaohsiung J Med Sci 2019; 35:265-276. [PMID: 31001923 DOI: 10.1002/kjm2.12065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of acute lung injury (ALI) is characterized by lung inflammation and lung oxidative stress. The study was conducted in order to investigate the effect toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) exhibited on oxidative stress in ALI. After the rats had been assigned into different groups, arterial blood, white blood cell (WBC), lung permeability index (LPI), wet/dry (W/D) ratio, TLR4 and NF-κB expression and superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) were examined. Afterward, the correlation between the levels of TLR4 and NF-κB was determined. Decreased levels of PaO2 , SOD, MPO, and GSH accompanied by increased levels of PaCO2 , WBC number, LPI and W/D ratio, MDA and ROS, as well as TLR4 and NF-κB expressions in the ALI, ALI + NF-κB inhibitor, and ALI + phosphate buffer saline groups were found. Inhibition of NF-κB resulted in increased PaO2 and decreased PaCO2 levels, WBC number, and LPI and W/D ratio. Decreased expression of NF-κB increased SOD, GSH, and MPO, but decreased MDA and ROS. We also found that NF-κB inhibition resulted in the improvement of ALI in rats. TLR4 and NF-κB expressions were negatively correlated with levels of SOD, MPO, and GSH, and positively correlated with MDA and ROS levels. In summary, our findings provided evidence that inhibition of the TLR4/NF-κB signaling pathway decreases oxidative stress, thereby improving ALI. As a result, NF-κB signaling pathway has shown potential as a therapeutic target in ALI therapy.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Department of Respiratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yan-Cun Wang
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| | - Zheng Li
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|