1
|
Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: Advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother 2022; 155:113712. [PMID: 36130420 DOI: 10.1016/j.biopha.2022.113712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis (AS) is the most common causes of cardiovascular disease characterized by the formation of atherosclerotic plaques in the arterial wall, and it has become a dominant public health problem that seriously threaten people worldwide. Autophagy is a cellular self-catabolism process, which is critical to protect cellular homeostasis against harmful conditions. Emerging evidence suggest that dysregulated autophagy is involved in the development of AS. Therefore, pharmacological interventions have been developed to inhibit the AS via autophagy induction. Among various AS treating methods, herbal medicines and natural products have been applied as effective complementary and alternative medicines to ameliorate AS and its associated cardiovascular disease. Recently, mounting evidence revealed that natural bioactive compounds from herbs and natural products could induce autophagy to suppress the occurrence and development of AS, by promoting cholesterol efflux, reducing plaque inflammation, and inhibiting apoptosis or senescence. In the present review, we highlight recent findings regarding possible effects and molecular mechanism of natural compounds in autophagy-targeted mitigation of atherosclerosis, aiming to provide new potential therapeutic strategies for the atherosclerosis treatment preclinically and clinically.
Collapse
Affiliation(s)
- Sijian Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Ruan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Jia M, Su X, Qin Q, Li Y, Wang S, Chen Y. Tetrahydroxystilbene glucoside attenuated homocysteine-upregulated endothelin receptors in vascular smooth muscle cells via the ERK 1 /2 /NF-κB signaling pathway. Phytother Res 2022; 36:3352-3361. [PMID: 35648450 DOI: 10.1002/ptr.7519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
2,3,5,4'-Tetrahydrostilbene-2-o-β-d-glucoside (TSG) is the main active component of Polygonum multiflorum Thunb. It has effects on hypertension. However, the mechanism is unclear. Current research is devoted to exploring the mechanism of TSG improving HHcy-induced hypertension. The mice received a subcutaneous injection of Hcy in the presence or absence of TSG for 4 weeks. Blood pressure (BP) was measured using a noninvasive tail-cuff plethysmography method. Levels of plasma Hcy and endothelin-1 were measured using ELISA. Rat SMA without endothelium was cultured in a serum-free medium in the presence or absence of TSG with or without Hcy. The contractile response to sarafotoxin 6c or endothein-1 was studied using a sensitive myography. The levels of protein were detected using Western blotting. The results showed that TSG lowered HHcy-elevated BP and decreased levels of plasma Hcy and endothelin-1 in mice. Furthermore, the results showed that TSG inhibited Hcy-upregulated ET receptor expression and ET receptor-mediated contractile responses as well as the levels of p-ERK1/2 and p-p65 in SMA. In vivo results further validate the in vitro results. In conclusion, TSG can decrease the levels of plasma Hcy and ET-1 and downregulate Hcy-upregulated ET receptors in VSMCs by inhibiting the ERK1/2 /NF-κB/ETB2 pathway to lower the BP.
Collapse
Affiliation(s)
- Min Jia
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yajuan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Siwang Wang
- Shaanxi Key Laboratory of Biomedicine, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China.,Institute of Materia Medic, Department of Natural Medicine School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Li L, Su XL, Bai TT, Qin W, Li AH, Liu YX, Wang M, Wang JK, Xing L, Li HJ, He CX, Zhou X, Zhao D, Li PQ, Wu SP, Liu JL, Chen YL, Cao HL. New paeonol derivative C302 reduces hypertension in spontaneously hypertensive rats through endothelium-dependent and endothelium-independent vasodilation. Eur J Pharmacol 2022; 927:175057. [PMID: 35636525 DOI: 10.1016/j.ejphar.2022.175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease and Chinese herb monomers could provide new structural skeletons for anti-hypertension new drug development. Paeonol is a Chinese herbal monomer extracted from Cortex moutan, exhibited some anti-hypertensive activity. The study focused on the structural optimization of paeonol to provide promising lead compounds for anti-hypertension new drug development. Herein, twelve new paeonol derivatives (PD) were designed and synthesized and their vasodilation activity was evaluated by in vitro vasodilation drug screening platform based on Myograph. Its anti-hypertension activity, PD-C302 (2-hydroxy-4-methoxyvalerophenone) as a representative with the optimal vasodilation activity, was determined by its response to blood pressure in spontaneously hypertensive rats (SHR) in vivo. Moreover, its molecular mechanism was probed by the vasodilation activity of rat superior mesenteric artery rings with or without endothelium pre-contracted by potassium chloride (KCl) or phenylephrine hydrochloride (PE). It was indicated that PD-C302 significantly reduced the blood pressure in SHR, which would involve in PD-C302-induced vasodilation. Furthermore, endothelium-dependent pathways and endothelium-independent pathways both contributed importantly to PD-C302-induced vasodilation at low concentration of PD-C302. Endothelium-independent pathways (vascular smooth muscle cell-mediated vasodilation), were mainly responsible for the PD-C302-induced vasodilation at high concentration of PD-C302, which involved in opening multiple K+ channels to restrain Ca2+ channels, and then triggered vasodilation to reduce blood pressure. PD-C302 has a simple structure and favorable anti-hypertensive activity in vivo, which could be a promising lead compound for anti-hypertension new drug development.
Collapse
Affiliation(s)
- Long Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xing-Li Su
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Tian-Tian Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ai-Hong Li
- Shaanxi Key Laboratory of Chinese Herb and Natural Drug Development, Medicine Research Institute, Shaanxi Pharmaceutical Holding Group Co., LTD, Xi'an, Shaanxi, 710075, China
| | - Yang-Xin Liu
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ming Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiang-Kai Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lu Xing
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hui-Jin Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Chun-Xia He
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhou
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Dong Zhao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Peng-Quan Li
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jian-Li Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yu-Long Chen
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, Garcia-Arroyo FE, Sánchez-Lozada LG. Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. Am J Physiol Regul Integr Comp Physiol 2022; 322:R347-R359. [PMID: 35271385 PMCID: PMC8993531 DOI: 10.1152/ajpregu.00238.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, Colorado
- Kidney Disease Division, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | | | - Fernando E Garcia-Arroyo
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Laura G Sánchez-Lozada
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| |
Collapse
|
5
|
Qin W, Li YH, Tong J, Wu J, Zhao D, Li HJ, Xing L, He CX, Zhou X, Li PQ, Meng G, Wu SP, Cao HL. Rational Design and Synthesis of 3-Morpholine Linked Aromatic-Imino-1H-Indoles as Novel Kv1.5 Channel Inhibitors Sharing Vasodilation Effects. Front Mol Biosci 2022; 8:805594. [PMID: 35141279 PMCID: PMC8819089 DOI: 10.3389/fmolb.2021.805594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical sustained arrhythmia; clinical therapeutic drugs have low atrial selectivity and might cause more severe ventricle arrhythmias while stopping AF. As an anti-AF drug target with high selectivity on the atrial muscle cells, the undetermined crystal structure of Kv1.5 potassium channel impeded further new drug development. Herein, with the simulated 3D structure of Kv1.5 as the drug target, a series of 3-morpholine linked aromatic amino substituted 1H-indoles as novel Kv1.5 channel inhibitors were designed and synthesized based on target–ligand interaction analysis. The synthesis route was practical, starting from commercially available material, and the chemical structures of target compounds were characterized. It was indicated that compounds T16 and T5 (100 μM) exhibited favorable inhibitory activity against the Kv1.5 channel with an inhibition rate of 70.8 and 57.5% using a patch clamp technique. All compounds did not exhibit off-target effects against other drug targets, which denoted some selectivity on the Kv1.5 channel. Interestingly, twelve compounds exhibited favorable vasodilation activity on pre-contracted arterial rings in vitro using KCl or phenylephrine (PE) by a Myograph. The vasodilation rates of compounds T16 and T4 (100 μM) even reached over 90%, which would provide potential lead compounds for both anti-AF and anti-hypertension new drug development.
Collapse
Affiliation(s)
- Wei Qin
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Jin Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu Xing
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ge Meng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| |
Collapse
|
6
|
Menezes-Rodrigues FS, Errante PR, Araújo EA, Fernandes MPP, Silva MMD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir Bras 2021; 36:e360306. [PMID: 33978062 PMCID: PMC8112107 DOI: 10.1590/acb360306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the preventive cardioprotective effects of resveratrol and grape products, such as grape juice and red wine, in animal model of cardiac ischemia and reperfusion. METHODS Male Wistar rats orally pretreated for 21-days with resveratrol and grape products were anesthetized and placed on mechanical ventilation to surgically induce cardiac ischemia and reperfusion by obstruction (ischemia) followed by liberation (reperfusion) of blood circulation in left descending coronary artery. These rats were submitted to the electrocardiogram (ECG) analysis to evaluate the effects of pretreatment with resveratrol and grape products on the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB) and lethality (LET) resulting from cardiac ischemia and reperfusion. RESULTS It was observed that the incidence of AVB was significantly lower in rats pretreated with resveratrol (25%), grape juice (37.5%) or red wine (12.5%) than in rats treated with saline solution (80%) or ethanol (80%). Similarly, incidence of LET was also significantly lower in rats pretreated with resveratrol (25%), grape juice (25%) or red wine (0%) than in rats treated with saline solution (62.5%) or ethanol (75%). CONCLUSIONS These results indicate that the cardioprotective response stimulated by resveratrol and grape products prevents the lethal cardiac arrhythmias in animal model of ischemia and reperfusion, supporting the idea that this treatment can be beneficial for prevention of severe cardiac arrhythmias in patients with ischemic heart disease.
Collapse
|
7
|
Resveratrol Stimulates the Na+–Ca2+ Exchanger on the Plasma Membrane to Reduce Cytosolic Ca2+ in Rat Aortic Smooth Muscle Cells. J Cardiovasc Pharmacol 2020; 76:610-616. [DOI: 10.1097/fjc.0000000000000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hatabu T, Harada T, Takao Y, Thi DH, Yamasato A, Horiuchi T, Mochizuki A, Kondo Y. Daily Meal Supplemented with Astaxanthin-Enriched Yolk Has Mitigative Effects against Hypertension in Spontaneously Hypertensive Rats. Biol Pharm Bull 2020; 43:404-408. [PMID: 32115501 DOI: 10.1248/bpb.b19-01013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effects of egg yolk powder enriched with astaxanthin (ASX-E) on blood pressure in spontaneously hypertensive rats (SHR) and to verify the benefits of ASX-E as a functional food. To investigate the antihypertensive effect, SHR were fed with an ASX-E mixed diet before hypertension development. Blood pressures were determined periodically during the study by the tail-cuff method. At the end of the study, animals were euthanized, and their thoracic aortas were collected to determine vascular conductance. The thoracic aorta tension was measured with a force displacement transducer. Concentration-dependent response relationships were determined by cumulative addition of 10-9-10-4 M Carbamoylcholine (Cch). Blood pressures of the SHR in the ASX-E mixed diet group were ASX-dose-dependently lower than that of those in the control group. In SHR fed with an ASX-E mixed diet, Cch induced vasorelaxation in the thoracic aorta with endothelium lining but not without endothelium. However, the antihypertensive effect of ASX-E was not observed on blood pressures in SHR that were fed with ASX-E only after the development of hypertension. Results suggest that ASX-E protects endothelial function and thereby prevents the development of hypertension. Hence, the results of our research indicate that daily consumption of ASX-E has a potential benefit on human health.
Collapse
Affiliation(s)
- Toshimitsu Hatabu
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Takumi Harada
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Yuri Takao
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Dung Ho Thi
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University
| | | | | | | | - Yasuhiro Kondo
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
9
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
11
|
Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca 2+ mobilization in the cardiovascular system. Ann N Y Acad Sci 2017; 1403:82-91. [PMID: 28665033 DOI: 10.1111/nyas.13386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022]
Abstract
In the cardiovascular system, Ca2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca2+ mobilization. The actions of Res and PD on Ca2+ signals delicately manipulated by multiple Ca2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Peiya Chen
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Endocrinology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Jingzhang Lv
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|