1
|
Poudel SB, Ruff RR, Yildirim G, Miller RA, Harrison DE, Strong R, Kirsch T, Yakar S. Development of primary osteoarthritis during aging in genetically diverse UM-HET3 mice. Arthritis Res Ther 2024; 26:118. [PMID: 38851726 PMCID: PMC11161968 DOI: 10.1186/s13075-024-03349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. METHODS We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. RESULTS Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and β-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. CONCLUSIONS Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA
| | - Ryan R Ruff
- David B. Kriser Dental Center, Biostatistics Core, Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010-4086, USA
| | - Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Barshop Institute for Longevity and Aging Studies and Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, NYU Grossman School of Medicine, New York, NY, 10100, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA.
| |
Collapse
|
2
|
Zhang L, Zhang H, Xie Q, Feng H, Li H, Li Z, Yang K, Ding J, Gao G. LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review. Front Med (Lausanne) 2024; 11:1326843. [PMID: 38449881 PMCID: PMC10915071 DOI: 10.3389/fmed.2024.1326843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of cartilage that affects the quality of life and has increased in morbidity and mortality in recent years. Cartilage homeostasis and dysregulation are thought to be important mechanisms involved in the development of OA. Many studies suggest that lncRNAs are involved in cartilage homeostasis in OA and that lncRNAs can be used to diagnose or treat OA. Among the existing therapeutic regimens, lncRNAs are involved in drug-and nondrug-mediated therapeutic mechanisms and are expected to improve the mechanism of adverse effects or drug resistance. Moreover, targeted lncRNA therapy may also prevent or treat OA. The purpose of this review is to summarize the links between lncRNAs and cartilage homeostasis in OA. In addition, we review the potential applications of lncRNAs at multiple levels of adjuvant and targeted therapies. This review highlights that targeting lncRNAs may be a novel therapeutic strategy for improving and modulating cartilage homeostasis in OA patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Qian Xie
- The Third Clinical Medicine School, Nanchang University, Nanchang, China
| | - Haiqi Feng
- Queen Mary School, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Guicheng Gao
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Poudel SB, Ruff RR, Yildirim G, Miller RA, Harrison DE, Strong R, Kirsch T, Yakar S. Development of primary osteoarthritis during aging in genetically diverse UM-HET3 mice. RESEARCH SQUARE 2024:rs.3.rs-3858256. [PMID: 38343826 PMCID: PMC10854287 DOI: 10.21203/rs.3.rs-3858256/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. Methods We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. Results Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and β-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. Conclusions Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Ryan R Ruff
- David B. Kriser Dental Center, Biostatistics Core, Department of Epidemiology and Health Promotion, New York University College of Dentistry New York, NY 10010-4086
| | - Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies and Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, NYU Grossman School of Medicine, and Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| |
Collapse
|
4
|
Zhu C, Chen B, He X, Li W, Wang S, Zhu X, Li Y, Wan P, Li X. LncRNA MEG3 suppresses erastin-induced ferroptosis of chondrocytes via regulating miR-885-5p/SLC7A11 axis. Mol Biol Rep 2024; 51:139. [PMID: 38236340 DOI: 10.1007/s11033-023-09095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Ferroptosis is involved in osteoarthritis development; however, the roles of long noncoding RNAs (lncRNAs), including lncRNA MEG3, in the regulation of ferroptosis in osteoarthritis are still unclear. METHODS In this study, qRT‒PCR and Western blotting assays were used to detect the expression of lncRNA MEG3, miR-885-5p, SLC7A11 and GPX4; MDA and CCK-8 assays were applied to analyse cellular MDA levels and cell viability, respectively. RESULT Erastin elevated cellular MDA levels and decreased the viability of chondrocytes and the erastin-induced decline in cell viability was reversed by a ferroptosis inhibitor (ferrostatin-1). Erastin downregulated lncRNA MEG3, SLC7A11 and GPX4 and upregulated miR-885-5p. Silencing of lncRNA MEG3 increased miR-885-5p and downregulated SLC7A11 and GPX4 and further sensitized chondrocytes to erastin-induced ferroptosis. In contrast, overexpression of lncRNA MEG3 had opposite effects. Dual luciferase assays confirmed binding between lncRNA MEG3 and miR-885-5p and between miR-885-5p and the 3'UTR of SLC7A11. In the synovial fluids from patients with osteoarthritis compared with synovial fluids from normal controls, the RNA levels of lncRNA MEG3 and SLC7A11 were decreased and the miR-885-5p expression level was increased. CONCLUSION Our findings indicated that lncRNA MEG3 overexpression alleviated ferroptosis in chondrocytes by affecting the miR-885-5p/SLC7A11 signalling pathway.
Collapse
Affiliation(s)
- Chongtao Zhu
- Laser Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Bin Chen
- Orthopaedics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xu He
- Yunnan Province Clinical Research Center for Geriatrics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Weiyuan Li
- Yunnan Province Clinical Research Center for Geriatrics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Shengyu Wang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xun Zhu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yan Li
- Yunnan Province Clinical Research Center for Geriatrics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Ping Wan
- Yunnan Province Clinical Research Center for Geriatrics, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Xiaolu Li
- Yunnan Province Clinical Research Center for Geriatrics, The First People's Hospital of Yunnan Province, Kunming, 650032, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
5
|
Zhang X, Liu Q, Zhang J, Song C, Han Z, Wang J, Shu L, Liu W, He J, Wang P. The emerging role of lncRNAs in osteoarthritis development and potential therapy. Front Genet 2023; 14:1273933. [PMID: 37779916 PMCID: PMC10538550 DOI: 10.3389/fgene.2023.1273933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis impairs the functions of various joints, such as knees, hips, hands and spine, which causes pain, swelling, stiffness and reduced mobility in joints. Multiple factors, including age, joint injuries, obesity, and mechanical stress, could contribute to osteoarthritis development and progression. Evidence has demonstrated that genetics and epigenetics play a critical role in osteoarthritis initiation and progression. Noncoding RNAs (ncRNAs) have been revealed to participate in osteoarthritis development. In this review, we describe the pivotal functions and molecular mechanisms of numerous lncRNAs in osteoarthritis progression. We mention that long noncoding RNAs (lncRNAs) could be biomarkers for osteoarthritis diagnosis, prognosis and therapeutic targets. Moreover, we highlight the several compounds that alleviate osteoarthritis progression in part via targeting lncRNAs. Furthermore, we provide the future perspectives regarding the potential application of lncRNAs in diagnosis, treatment and prognosis of osteoarthritis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Qishun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hang Gang Hospital, Hangzhou, China
| | - Jiandong Zhang
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Caiyuan Song
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Zongxiao Han
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jinjie Wang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Jinlin He
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Peter Wang
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li J, Liu W, Peng F, Cao X, Xie X, Peng C. The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Front Genet 2023; 14:1132884. [PMID: 36968595 PMCID: PMC10036404 DOI: 10.3389/fgene.2023.1132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cardio-cerebrovascular disease, related to high mortality and morbidity worldwide, is a type of cardiovascular or cerebrovascular dysfunction involved in various processes. Therefore, it is imperative to conduct additional research into the pathogenesis and new therapeutic targets of cardiovascular and cerebrovascular disorders. Long non-coding RNAs (lncRNAs) have multiple functions and are involved in nearly all cellular biological processes, including translation, transcription, signal transduction, and cell cycle control. LncR-Meg3 is one of them and is becoming increasingly popular. By binding proteins or directly or competitively binding miRNAs, LncR-Meg3 is involved in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition, and other processes. Recent research has shown that LncR-Meg3 is associated with acute myocardial infarction and can be used to diagnose this condition. This article examines the current state of knowledge regarding the expression and regulatory function of LncR-Meg3 in relation to cardiovascular and cerebrovascular diseases. The abnormal expression of LncR-Meg3 can influence neuronal cell death, inflammation, apoptosis, smooth muscle cell proliferation, etc., thereby aggravating or promoting the disease. In addition, we review the bioactive components that target lncR-Meg3 and propose some potential delivery vectors. A comprehensive and in-depth analysis of LncR-Meg3’s role in cardiovascular disease suggests that targeting LncR-Meg3 may be an alternative therapy in the near future, providing new options for slowing the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
7
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
8
|
Roldan CJ, Huh B, Song J, Nieto Y, Osei J, Chai T, Nouri K, Koyyalagunta L, Bruera E. Methylene blue for intractable pain from oral mucositis related to cancer treatment: a randomized phase 2 clinical trial. BMC Med 2022; 20:377. [PMID: 36324139 PMCID: PMC9632023 DOI: 10.1186/s12916-022-02579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oral mucositis (OM) in patients receiving cancer therapy is thus far not well managed with standard approaches. We aimed to assess the safety and effectiveness of methylene blue (MB) oral rinse for OM pain in patients receiving cancer therapy. METHODS In this randomized, single-blind phase 2 clinical trial, patients were randomized to one of four arms: MB 0.025%+conventional therapy (CTx) (n = 15), MB 0.05%+CTx (n = 14), MB 0.1%+CTx (n = 15), or CTx alone (n = 16). Intervention groups received MB oral rinse every 6 h for 2 days with outcomes measured at days 1-2; safety was evaluated up to 30 days. The primary outcome measured change in the pain numeric rating scale (0-10) from baseline to day 2. Secondary outcome measured change in oral function burden scores from baseline to day 2, World Health Organization OM grades, morphine equivalent daily doses, and adverse events. The trial was registered with ClinicalTrials.gov ID: NCT03469284. RESULTS Sixty patients (mean age 43, range 22-62 years) completed the study. Compared with those who received CTx alone, those who received MB had a significant reduction of pain scores at day 2 of treatment (mean ± SD); 0.025%: 5.2 ± 2.9, 0.05%: 4.5 ± 2.9, 0.1%: 5.15 ± 2.6) and reduction of oral function burden scores (0.025%: 2.5 ± 1.55, 0.05%: 2.8 ± 1.7, 0.1%: 2.9 ± 1.60). No serious adverse events were noted, but eight patients reported burning sensation of the oral cavity with the first dose, and this caused one patient to discontinue therapy. CONCLUSIONS MB oral rinse showed significant pain reduction and improved oral functioning with minimal adverse effects. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT03469284.
Collapse
Affiliation(s)
- Carlos J Roldan
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA. .,McGovern Medical School at the University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| | - Billy Huh
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yago Nieto
- Department of Stem Cell Transplant, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joyce Osei
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Chai
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kent Nouri
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lakshmi Koyyalagunta
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Eduardo Bruera
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Li S, Si H, Xu J, Liu Y, Shen B. The therapeutic effect and mechanism of melatonin on osteoarthritis: From the perspective of non-coding RNAs. Front Genet 2022; 13:968919. [PMID: 36267400 PMCID: PMC9576930 DOI: 10.3389/fgene.2022.968919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a slowly progressing and irreversible joint disease. The existing non-surgical treatment can only delay its progress, making the early treatment of OA a research hotspot in recent years. Melatonin, a neurohormone mainly secreted by the pineal gland, has a variety of regulatory functions in different organs, and numerous studies have confirmed its therapeutic effect on OA. Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome. Various ncRNAs show significant differentially expressed between healthy people and OA patients. ncRNAs play diverse roles in many cellular processes and have been implicated in many pathological conditions, especially OA. Interestingly, the latest research found a close interaction between ncRNAs and melatonin in regulating the pathogenesis of OA. This review discusses the current understanding of the melatonin-mediated modulation of ncRNAs in the early stage of OA. We also delineate the potential link between rhythm genes and ncRNAs in chondrocytes. This review will serve as a solid foundation to formulate ideas for future mechanistic studies on the therapeutic potential of melatonin and ncRNAs in OA and better explore the emerging functions of the ncRNAs.
Collapse
|
10
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
11
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
12
|
Wu ZY, Du G, Lin YC. Identifying hub genes and immune infiltration of osteoarthritis using comprehensive bioinformatics analysis. J Orthop Surg Res 2021; 16:630. [PMID: 34670585 PMCID: PMC8527722 DOI: 10.1186/s13018-021-02796-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common chronic degenerative joint disorder globally that is characterized by synovitis, cartilage degeneration, joint space stenosis, and sub-cartilage bone hyperplasia. However, the pathophysiologic mechanisms of OA have not been thoroughly investigated. Methods In this study, we conducted various bioinformatics analyses to identify hub biomarkers and immune infiltration in OA. The gene expression profiles of synovial tissues from 29 healthy controls and 36 OA samples were obtained from the gene expression omnibus database to identify differentially expressed genes (DEGs). The CIBERSORT algorithm was used to explore the association between immune infiltration and arthritis. Results Eighteen hub DEGs were identified as critical biomarkers for OA. Through gene ontology and pathway enrichment analyses, it was found that these DEGs were primarily involved in PI3K-Akt signaling pathway and Rap1 signaling pathway. Furthermore, immune infiltration analysis revealed differences in immune infiltration between patients with OA and healthy controls. The hub gene ZNF160 was closely related to immune cells, especially mast cell activation in OA. Conclusion Overall, this study presented a novel method to identify hub DEGs and their correlation with immune infiltration, which may provide novel insights into the diagnosis and treatment of patients with OA.
Collapse
Affiliation(s)
- Zheng-Yuan Wu
- Department of Hand Plastic Surgery, The First People's Hospital of Linping District, No. 369, Linping Yingbin Road, Yuhang District, Hangzhou, 311199, Zhejiang, China
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yi-Cai Lin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Dong J, Xia R, Zhang Z, Xu C. lncRNA MEG3 aggravated neuropathic pain and astrocyte overaction through mediating miR-130a-5p/CXCL12/CXCR4 axis. Aging (Albany NY) 2021; 13:23004-23019. [PMID: 34609952 PMCID: PMC8544300 DOI: 10.18632/aging.203592] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) exert a critical function in mediating neuropathic pain (NP). MEG3, a novel lncRNA, contributes to astrocyte activation and inflammation. However, its role in NP remains unclear. METHODS The chronic constriction injury (CCI) method was employed to construct an NP rat model. Astrocyte activation was induced by lipopolysaccharide (LPS). The profiles of MEG3, microRNA (miR)-130a-5p, CXC motif chemokine receptor 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4), and the Rac1/NF-κB pathway in CCI rats' spinal cord tissues and astrocytes were monitored by reverse transcription-quantitative PCR (RT-qPCR) and western blot (WB). Pain scores of CCI rats were assessed. Enzyme-linked immunosorbent assay (ELISA) was adopted to monitor neuroinflammation alteration. The glial fibrillary acidic protein (GFAP)-labeled astrocytes were tested by immunohistochemistry (IHC). Bioinformatics, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were utilized to verify the molecular mechanism between MEG3 and miR-130a-3p. RESULTS MEG3, CXCL12 and CXCR4 were overexpressed and miR-130a-5p was knocked down in CCI rats and LPS-induced astrocytes. Up-regulating MEG3 aggravated NP, enhanced inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6) expression and release in CCI rats and LPS-induced astrocytes. Up-regulating miR-130-5p repressed LPS-induced inflammation in astrocytes. AS verified by the dual-luciferase reporter assay and RIP assay, MEG3 sponged miR-130a-5p as a competitive endogenous RNA (ceRNA). What's more, miR-130a-5p up-regulation weakened the MEG3-induced proinflammatory effects on LPS-induced astrocytes. CONCLUSIONS MEG3 aggravates NP and astrocyte activation via the miR-130a-5p/CXCL12/CXCR4 axis, which is a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Jiacai Dong
- Department of Anesthesiology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang 433100, Hubei, China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Zhonggui Zhang
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Cheng Xu
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| |
Collapse
|
14
|
Wang J, Sun Y, Liu J, Yang B, Wang T, Zhang Z, Jiang X, Guo Y, Zhang Y. Roles of long non‑coding RNA in osteoarthritis (Review). Int J Mol Med 2021; 48:133. [PMID: 34013375 PMCID: PMC8148092 DOI: 10.3892/ijmm.2021.4966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic bone and joint disease characterized by articular cartilage degeneration and joint inflammation and is the most common form of arthritis. The clinical manifestations of OA are chronic pain and joint activity disorder, which severely affect the patient quality of life. Long non-coding RNA (lncRNA) is a class of RNA molecules >200 nucleotides long that are expressed in animals, plants, yeast, prokaryotes and viruses. lncRNA molecules lack an open reading frame and are not translated into protein. The present review collated the results of recent studies on the role of lncRNA in the pathogenesis of OA to provide information for the prevention, diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yanshan Sun
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Jianyong Liu
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhen Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
15
|
Lee SW, Han HC. Methylene Blue Application to Lessen Pain: Its Analgesic Effect and Mechanism. Front Neurosci 2021; 15:663650. [PMID: 34079436 PMCID: PMC8165385 DOI: 10.3389/fnins.2021.663650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Methylene blue (MB) is a cationic thiazine dye, widely used as a biological stain and chemical indicator. Growing evidence have revealed that MB functions to restore abnormal vasodilation and notably it is implicated even in pain relief. Physicians began to inject MB into degenerated disks to relieve pain in patients with chronic discogenic low back pain (CDLBP), and some of them achieved remarkable outcomes. For osteoarthritis and colitis, MB abates inflammation by suppressing nitric oxide production, and ultimately relieves pain. However, despite this clinical efficacy, MB has not attracted much public attention in terms of pain relief. Accordingly, this review focuses on how MB lessens pain, noting three major actions of this dye: anti-inflammation, sodium current reduction, and denervation. Moreover, we showed controversies over the efficacy of MB on CDLBP and raised also toxicity issues to look into the limitation of MB application. This analysis is the first attempt to illustrate its analgesic effects, which may offer a novel insight into MB as a pain-relief dye.
Collapse
Affiliation(s)
- Seung Won Lee
- Good Doctor Research Institute, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| |
Collapse
|
16
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
17
|
Chen X, Song D. LncRNA MEG3 Participates in Caerulein-Induced Inflammatory Injury in Human Pancreatic Cells via Regulating miR-195-5p/FGFR2 Axis and Inactivating NF-κB Pathway. Inflammation 2020; 44:160-173. [PMID: 32856219 DOI: 10.1007/s10753-020-01318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute pancreatitis (AP) is a dysfunctional pancreas disease marked by severe inflammation. Long non-coding RNAs (lncRNAs) involving in the regulation of inflammatory responses have been frequently mentioned. The purpose of this study was to ensure the function and action mode of lncRNA maternally expressed gene 3 (MEG3) in caerulein-induced AP cell model. HPDE cells were treated with caerulein to establish an AP model in vitro. The expression of MEG3, miR-195-5p, and fibroblast growth factor receptor 2 (FGFR2) was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay, respectively. The expression of CyclinD1, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (Bax), FGFR2, P65, phosphorylated P65 (p-P65), alpha inhibitor of nuclear factor kappa beta (NF-κB) (IκB-α), and phosphorylated IκB-α (p-IκB-α) at the protein level was quantified by western blot. The concentrations of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were monitored by enzyme-linked immunosorbent assay (ELISA). The targeted relationship between miR-195-5p and MEG3 or FGFR2 was forecasted by the online software starBase v2.0 and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. As a result, the expression of MEG3 and FGFR2 was decreased in caerulein-induced HPDE cells, while the expression of miR-195-5p was increased. MEG3 overexpression inhibited cell apoptosis and inflammatory responses that were induced by caerulein. Mechanically, miR-195-5p was targeted by MEG3 and abolished the effects of MEG3 overexpression. FGFR2 was a target of miR-195-5p, and MEG3 regulated the expression of FGFR2 by sponging miR-195-5p. FGFR2 overexpression abolished miR-195-5p enrichment-aggravated inflammatory injuries. Moreover, the NF-κB signaling pathway was involved in the MEG3/miR-195-5p/FGFR2 axis. Collectively, MEG3 participates in caerulein-induced inflammatory injuries by targeting the miR-195-5p/FGFR2 regulatory axis via mediating the NF-κB pathway in HPDE cells.
Collapse
Affiliation(s)
- Xinghai Chen
- Department of Emergency and Critical Medicine, The Second Hospital of Jilin University, No. 218, Nanguan District, Ziqiang Street, Changchun, Jilin, 130041, China
| | - Debiao Song
- Department of Emergency and Critical Medicine, The Second Hospital of Jilin University, No. 218, Nanguan District, Ziqiang Street, Changchun, Jilin, 130041, China.
| |
Collapse
|
18
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
19
|
Nedu ME, Tertis M, Cristea C, Georgescu AV. Comparative Study Regarding the Properties of Methylene Blue and Proflavine and Their Optimal Concentrations for In Vitro and In Vivo Applications. Diagnostics (Basel) 2020; 10:diagnostics10040223. [PMID: 32326607 PMCID: PMC7235860 DOI: 10.3390/diagnostics10040223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Methylene blue and proflavine are fluorescent dyes used to stain nucleic acid from the molecular level to the tissue level. Already clinically used for sentinel node mapping, detection of neuroendocrine tumors, methemoglobinemia, septic shock, ifosfamide-induced encephalopathy, and photodynamic inactivation of RNA viruses, the antimicrobial, anti-inflammatory, and antioxidant effect of methylene blue has been demonstrated in different in vitro and in vivo studies. Proflavine was used as a disinfectant and bacteriostatic agent against many gram-positive bacteria, as well as a urinary antiseptic involved in highlighting cell nuclei. At the tissue level, the anti-inflammatory effects of methylene blue protect against pulmonary, renal, cardiac, pancreatic, ischemic-reperfusion lesions, and fevers. First used for their antiseptic and antiviral activity, respectively, methylene blue and proflavine turned out to be excellent dyes for diagnostic and treatment purposes. In vitro and in vivo studies demonstrated that both dyes are efficient as perfusion and tissue tracers and permitted to evaluate the minimal efficient concentration in different species, as well as their pharmacokinetics and toxicity. This review aims to identify the optimal concentrations of methylene blue and proflavine that can be used for in vivo experiments to highlight the vascularization of the skin in the case of a perforasome (both as a tissue tracer and in vascular mapping), as well as their effects on tissues. This review is intended to be a comparative and critical presentation of the possible applications of methylene blue (MB) and proflavine (PRO) in the surgical field, and the relevant biomedical findings from specialized literature to date are discussed as well.
Collapse
Affiliation(s)
- Maria-Eliza Nedu
- Department of Plastic Surgery, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 46-50 Viilor St., 400347 Cluj-Napoca, Romania; (M.-E.N.); (A.V.G.)
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597256
| | - Alexandru Valentin Georgescu
- Department of Plastic Surgery, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 46-50 Viilor St., 400347 Cluj-Napoca, Romania; (M.-E.N.); (A.V.G.)
| |
Collapse
|
20
|
Wang A, Hu N, Zhang Y, Chen Y, Su C, Lv Y, Shen Y. MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genomics 2019; 12:201. [PMID: 31888661 PMCID: PMC6937924 DOI: 10.1186/s12920-019-0649-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to investigate the role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) and related molecular mechanisms, in osteoarthritis (OA). Methods Cartilage tissues of OA patients and healthy volunteers were isolated and cultured. After transfection with the appropriate constructs, chondrocytes were classified into Blank, pcDNA3.1-NC, pcDNA3.1-MEG3, si-NC, si-MEG3, pcDNA3.1-NC + mimics NC, pcDNA3.1-MEG3 + mimics NC, pcDNA3.1-NC + miR-361-5p mimics and pcDNA3.1-MEG3 + miR-361-5p mimics groups. qRT-PCR was used to detect the expression of MEG3, miR-361-5p and FOXO1. Western blot, luciferase reporter assay, RIP, CCK-8, and flow cytometry analysis were performed to reveal the morphology, proliferation, and apoptotic status of cartilage cells. Histological analysis and immunostaining were conducted in the OA rat model. Results Expression of MEG3 and FOXO1 was significantly decreased in OA compared with the normal group, while the expression of miR-361-5p was increased. MEG3 might serve as a ceRNA of miR-361-5p in OA chondrocytes. Moreover, using western blot analyses and the CCK-8 assay, MEG3 was shown to target miR-361-5p/FOXO1, elevate cell proliferation, and impair cell apoptosis. Functional analysis in vivo showed that MEG3 suppressed degradation of the cartilage matrix. Conclusion MEG3 can contribute to cell proliferation and inhibit cell apoptosis and degradation of extracellular matrix (ECM) via the miR-361-5p/FOXO1 axis in OA chondrocytes.
Collapse
Affiliation(s)
- Anying Wang
- Doctor Student, Hebei Medical University, No. 361, Zhongshan East Road, Hebei Province, Shijiazhuang, 050017, China.,Department of Orthopedic, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Shandong Province, Taishan, 271000, China
| | - Naixia Hu
- ICU, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Shandong Province, Taishan, 271000, China
| | - Yefeng Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Shandong Province, Taishan, 271000, China
| | - Yuanzhen Chen
- Department of Orthopedic, The Central Hospital of Taian City, No. 29, Longtan Road, Shandong Province, Taian, 271000, China
| | - Changhui Su
- Department of Orthopedic, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Shandong Province, Taishan, 271000, China
| | - Yao Lv
- Department of Orthopedic, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Shandong Province, Taishan, 271000, China
| | - Yong Shen
- Department of Orthopedic, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Hebei Province, Shijiazhuang, 050051, China.
| |
Collapse
|
21
|
Wang Y, Chen Z, Liu C, Lu X, Yang C, Qiu S. Distributive differences of P2Xs between the forelimb and hind limb of adjuvant arthritis rats and intervention by Notopterygh rhizoma et radix. PHARMACEUTICAL BIOLOGY 2019; 57:82-89. [PMID: 30724643 PMCID: PMC6366419 DOI: 10.1080/13880209.2018.1561730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Notopterygium incisum Ting ex H. T. Chang (Umbelliferae) (NI) specializes in treatment of upper limb rheumatoid arthritis (RA), but the exact mechanism is unclear. P2Xs are useful targets for inflammatory pain therapy. It led us to hypothesize that NI may preferentially act on particular P2Xs and these receptors may be unevenly distributed in the upper/lower limb. OBJECTIVE To investigate P2Xs distribution in the upper/lower limb and NI's targets in upper limb RA. MATERIALS AND METHODS The SD rats were randomized into 11 groups of 10 animals each. Eight experimental groups were established by the injection of 0.1 mL FCA into the plantar surface of rat paw. Three control groups suffered the same volume of saline. The articular cavities were then taken on the seventh day to detect P2Xs expression. NI (3 g/kg) and prednisone (10 mg/kg) were respectively given by oral gavage once daily for 14 d. The swelling degree and P2Xs were evaluated individually. RESULTS In normal rats, the expressions of P2X3 and P2X6 in forelimb were markedly higher than that of in hind limb (P < 0.05). After induced by FCA, P2X1, P2X3, P2X4, P2X5 and P2X7 were increased significantly (P < 0.01). The biggest difference was P2X3. In NI treatment rats, swelling degree of the 7th/14th day in forelimb was 68.24%/38.89%, whereas that of in hind limb was 88.72%/79.92%. P2X3 mRNA and protein expression was significantly reduced as contrasted with the control group (P < 0.05). CONCLUSIONS P2X3 receptor was predominantly expressed in the forelimb RA rat. NI relieved the FCA-induced RA by inhibiting upper limb's P2X3 receptor.
Collapse
Affiliation(s)
- Yinghao Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
- CONTACT Yinghao Wang
| | - Zhihuang Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
| | - Chen Liu
- College of Chemical and Material Science Engineering, Kaili University, Guizhou, PR China
| | - Xuehua Lu
- Fujian Medical Science Research Institute, Fuzhou, PR China
| | - Ce Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
| | - Songping Qiu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
- Songping Qiu College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou350122, PR China
| |
Collapse
|