1
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
2
|
Han YC, Xie HZ, Lu B, Xiang RL, Li JY, Qian H, Zhang SY. Effect of berberine on global modulation of lncRNAs and mRNAs expression profiles in patients with stable coronary heart disease. BMC Genomics 2022; 23:400. [PMID: 35619068 PMCID: PMC9134690 DOI: 10.1186/s12864-022-08641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Berberine (BBR) is an isoquinoline alkaloid found in the Berberis species. It was found to have protected effects in cardiovascular diseases. Here, we investigated the effect the regulatory function of long noncoding RNAs (lncRNAs) during the treatment of stable coronary heart disease (CHD) using BBR. We performed microarray analyses to identify differentially expressed (DE) lncRNAs and mRNAs between whole blood samples from 5 patients with stable CHD taking BBR and 5 no BBR volunteers. DE lncRNAs and mRNAs were validated by quantitative real-time PCR. RESULTS A total of 1703 DE lncRNAs and 912 DE mRNAs were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated DE mRNAs might be associated with mammalian target of rapamycin and mitogen-activated protein kinase pathway. These pathways may be involved in the healing process after CHD. To study the relationship between mRNAs encoding transcription factors (DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene) and CHD related de mRNAs, we performed protein and protein interaction analysis on their corresponding proteins. AKT and apoptosis pathway were significant enriched in protein and protein interaction network. BBR may affect downstream apoptosis pathways through DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene. Growth arrest-specific transcript 5 might regulate CHD-related mRNAs through competing endogenous RNA mechanism and may be the downstream target gene regulated by BBR. Verified by the quantitative real-time PCR, we identified 8 DE lncRNAs that may relate to CHD. We performed coding and non-coding co-expression and competing endogenous RNA mechanism analysis of these 8 DE lncRNAs and CHD-related DE mRNA, and predicted their subcellular localization and N6-methyladenosine modification sites. CONCLUSION Our research found that BBR may affect mammalian target of rapamycin, mitogen-activated protein kinase, apoptosis pathway and growth arrest-specific transcript 5 in the process of CHD. These pathways may be involved in the healing process after CHD. Our research might provide novel insights for functional research of BBR.
Collapse
Affiliation(s)
- Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Bo Lu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, 100191, China
| | - Jing-Yi Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Front Pharmacol 2021; 12:631100. [PMID: 33815112 PMCID: PMC8010184 DOI: 10.3389/fphar.2021.631100] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in the world. However, due to the limited effectiveness and potential adverse effects of current treatments, the long-term prognosis of CVD patients is still discouraging. In recent years, several studies have found that berberine (BBR) has broad application prospects in the prevention and treatment of CVD. Due to its effectiveness and safety for gastroenteritis and diarrhea caused by bacterial infections, BBR has been widely used in China and other Asian countries since the middle of the last century. The development of pharmacology also provides evidence for the multi-targets of BBR in treating CVD. Researches on CVD, such as arrhythmia, atherosclerosis, dyslipidemia, hypertension, ischemic heart disease, myocarditis and cardiomyopathy, heart failure, etc., revealed the cardiovascular protective mechanisms of BBR. This review systematically summarizes the pharmacological research progress of BBR in the treatment of CVD in recent years, confirming that BBR is a promising therapeutic option for CVD.
Collapse
Affiliation(s)
- Yun Cai
- Doctoral Candidate, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jinjin Lu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
4
|
Tan N, Zhang Y, Zhang Y, Li L, Zong Y, Han W, Liu L. Berberine ameliorates vascular dysfunction by a global modulation of lncRNA and mRNA expression profiles in hypertensive mouse aortae. PLoS One 2021; 16:e0247621. [PMID: 33621262 PMCID: PMC7901729 DOI: 10.1371/journal.pone.0247621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The current study investigated the mechanism underlying the therapeutic effects of berberine in the vasculature in hypertension. Methods Angiotensin II (Ang II)-loaded osmotic pumps were implanted in C57BL/6J mice with or without berberine administration. Mouse aortae were suspended in myograph for force measurement. Microarray technology were performed to analyze expression profiles of lncRNAs and mRNAs in the aortae. These dysregulated expressions were then validated by qRT-PCR. LncRNA-mRNA co-expression network was constructed to reveal the specific relationships. Results Ang Ⅱ resulted in a significant increase in the blood pressure of mice, which was suppressed by berberine. The impaired endothelium-dependent aortic relaxation was restored in hypertensive mice. Microarray data revealed that 578 lncRNAs and 554 mRNAs were up-regulated, while 320 lncRNAs and 377 mRNAs were down-regulated in the aortae by Ang Ⅱ; both were reversed by berberine treatment. qRT-PCR validation results of differentially expressed genes (14 lncRNAs and 6 mRNAs) were completely consistent with the microarray data. GO analysis showed that these verified differentially expressed genes were significantly enriched in terms of “cellular process”, “biological regulation” and “regulation of biological process”, whilst KEGG analysis identified vascular function-related pathways including cAMP signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway etc. Importantly, we observed that lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 were majorly expressed in endothelial cells. Conclusion The present results suggest that the five lncRNAs ENSMUST00000144849, NR_028422, ENSMUST00000155383, AK041185, and uc.335+ might serve critical regulatory roles in hypertensive vasculature by targeting pivotal mRNAs and subsequently affecting vascular function-related pathways. Moreover, these lncRNAs were modulated by berberine, therefore providing the novel potential therapeutic targets of berberine in hypertension. Furthermore, lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 might be involved in the preservation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5430407. [PMID: 33062142 PMCID: PMC7537704 DOI: 10.1155/2020/5430407] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.
Collapse
|