1
|
Zhao YJ, Zhang J, Wang YC, Wang L, He XY. MiR-450a-5p Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion and Promotes Apoptosis via Targeting CREB1 and Inhibiting AKT/GSK-3β Signaling Pathway. Front Oncol 2021; 11:633366. [PMID: 33854971 PMCID: PMC8039465 DOI: 10.3389/fonc.2021.633366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer seriously affects human health and research on gastric cancer is attracting more and more attentions. In recent years, molecular targets have become the research focus. Accumulating evidence indicates that miR-450a-5p plays a critical role in cancer progression. However, the biological role of miR-450a-5p in gastric carcinogenesis remains largely unknown. In this study, we explore the effects and mechanisms of miR-450a-5p on the development and progression of gastric cancer. We used gain-of-function approaches to investigate the role of miR-450a-5p on gastric cancer cell proliferation, migration, invasion, and apoptosis using biological and molecular techniques including real-time quantitative PCR (RT-qPCR), CCK-8, colony formation, flow cytometry, Western blot, wound healing, transwell chamber, dual luciferase reporter, and tumor xenograft mouse model. We found that gastric cancer cells have low expression of miR-450a-5p and overexpression of miR-450a-5p inhibited gastric cancer cell proliferation, migration and invasion, and induced apoptosis in vitro. Moreover, we demonstrated that ectopic expression of miR-450a-5p inhibited gastric cancer growth in vivo. At the molecular level, overexpression of miR-450a-5p significantly increased the expression of pro-apoptotic proteins, including caspase-3, caspase-9, and Bax, and inhibited the expression of anti-apoptotic protein Bcl-2. Luciferase reporter experiment suggested that camp response element binding protein 1 (CREB1) had a negative correlation with miR-450a-5p expression, and knockdown of CREB1 alleviated gastric cancer growth. Furthermore, we also found that miR-450a-5p inhibited the activation of AKT/GSK-3β signaling pathway to inhibit the progression of gastric cancer. Collectively, miR-450a-5p repressed gastric cancer cell proliferation, migration and invasion and induced apoptosis through targeting CREB1 by inhibiting AKT/GSK-3β signaling pathway. MiR-450a-5p could be a novel molecular target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ya-Jun Zhao
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Zhang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong-Cang Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- Center for Diagnostic Pathology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Azarbarzin S, Safaralizadeh R, Khojasteh MB, Baghbanzadeh A, Baradaran B. Current perspectives on the dysregulated microRNAs in gastric cancer. Mol Biol Rep 2020; 47:7253-7264. [PMID: 32776162 DOI: 10.1007/s11033-020-05720-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022]
Abstract
Since gastric cancer (GC) is diagnosed at advanced stages, the survival rate is low in affected people. In this regard, investigating the mechanisms underlying GC development, are so critical. MiRNAs, which are small non coding RNAs, as a post transcriptional repressor, regulate expression of target genes by stimulating breakage or transcription suppression of their targets therefore aberrant expression of miRNAs leading to GC carcinogenesis. In the last decades, there have been various studies approving the pivotal role of miRNAs in various phases of GC development including cancer initiation, proliferation, migration, invasion, metastasis, angiogenesis, apoptosis, and drug resistance. Therefore, the present review aimed at summarizing the dysregulated miRNAs which contribute to various cellular and developmental mechanisms such as, proliferation, apoptosis, invasion, migration, and angiogenesis. Moreover, it provides an overview on novel miRNAs involved in drug resistance and circular miRNAs as cancer biomarkers. Thereafter, it is hoped that the present study will shed more light on diagnostic and prognostic biomarkers of GC, and potential GC treatments based on miRNAs.
Collapse
Affiliation(s)
- Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mahdi Banan Khojasteh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Peng X, Wu M, Liu W, Guo C, Zhan L, Zhan X. miR-502-5p inhibits the proliferation, migration and invasion of gastric cancer cells by targeting SP1. Oncol Lett 2020; 20:2757-2762. [PMID: 32782592 PMCID: PMC7399809 DOI: 10.3892/ol.2020.11808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-associated mortality in China. Aberrant microRNA (miR) expression can occur through multiple biological processes and has been implicated in cancer development. However, to the best of our knowledge, the function of miR-502-5p in GC is currently unclear. In the present study, the expression and function of miR-502-5p in GC was evaluated. Reverse transcription-quantitative (RT-q) PCR was used to measure the expression levels of miR-502-5p in GC tissues, normal adjacent tissues, a normal human gastric epithelial cell line (GES-1) and two GC cell lines. miR-502-5p expression levels were significantly lower in GC tissues and GC cell lines compared with those in adjacent normal tissues and GES-1 cells, respectively. Subsequently, the target genes of miR-502-5p were predicted, and it was demonstrated that the transcription factor SP1 was a direct target. SP1 expression, cell viability, migration and invasion, and SP1 protein levels were examined using RT-qPCR, an MTT assay, Transwell assay and western blotting, respectively. Human GC cells were then transfected with an miR-502-5p mimic to emulate miR-502-5p overexpression, resulting in inhibition of the proliferation, migration and invasion capacities of human GC cells. Compared with the negative control, cells overexpressing miR-502-5p had decreased levels of SP1 mRNA and protein. These data suggest that miR-502-5p serves as a tumor suppressor gene by targeting SP1 to regulate the proliferation, migration and invasion of GC cells.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai 200433, P.R. China
| | - Wuxia Liu
- VIP Clinic, Changhai Hospital, Naval Military Medical University, Shanghai 200433, P.R. China
| | - Chengtao Guo
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai 200433, P.R. China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
4
|
Su H, Ren F, Jiang H, Chen Y, Fan X. Upregulation of microRNA-520a-3p inhibits the proliferation, migration and invasion via spindle and kinetochore associated 2 in gastric cancer. Oncol Lett 2019; 18:3323-3330. [PMID: 31452811 DOI: 10.3892/ol.2019.10663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miR) serve important roles in the development and progression of tumors by targeting different genes. miR-520a-3p reported in lung and breast cancers as a tumor suppressor gene. However, the expression and functional significance of miR-520a-3p is not completely understood in gastric cancer (GC). In the present study, it was demonstrated that the expression levels of miR-520a-3p were significantly downregulated in GC tissues and cells using RT-qPCR. In addition, downregulated expression of miR-520a-3p was associated with the clinical stage of the tumor and invasion in patients with GC. Furthermore, overexpression of miR-520a-3p significantly inhibited cell proliferation, invasion and migration in SGC-7901 and MGC-803 GC cell lines using proliferation, wound healing and cell invasion assays. Spindle and kinetochore associated 2 (SKA2) was upregulated in GC cells using western blot analysis and a target gene of miR-520a-3p; miR-520a-3p mimics significantly reduced SKA2 expression. In addition, upregulation of SKA2 protein expression SKA2 reversed the miR-520a-3p-mediated inhibition of SGC-7901 cell proliferation, migration and invasion. In conclusion, miR-520a-3p functioned as a tumor suppressor gene by targeting SKA2 in GC cell lines, and may serve as a novel prognostic and potential therapeutic marker.
Collapse
Affiliation(s)
- Hui Su
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Feng Ren
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Haitao Jiang
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Yunjie Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Xiaoxiang Fan
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| |
Collapse
|
5
|
Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis 2019; 10:500. [PMID: 31235686 PMCID: PMC6591419 DOI: 10.1038/s41419-019-1734-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction plays a major role in the pathogenesis of cardiovascular diseases. MicroRNAs (miRNAs) are small RNAs that act as negative regulators of gene expression, but how miRNAs affect mitochondrial function in the heart is unclear. Using a miRNA microarray assay, we found that miR-762 predominantly translocated in the mitochondria and was significantly upregulated upon anoxia/reoxygenation (A/R) treatment. Knockdown of endogenous miR-762 significantly attenuated the decrease in intracellular ATP levels, the increase in ROS levels, the decrease in mitochondrial complex I enzyme activity and the increase in apoptotic cell death in cardiomyocytes, which was induced by A/R treatment. In addition, knockdown of miR-762 ameliorated myocardial ischemia/reperfusion (I/R) injury in mice. Mechanistically, we showed that enforced expression of miR-762 dramatically decreased the protein levels of endogenous NADH dehydrogenase subunit 2 (ND2) but had no effect on the transcript levels of ND2. The luciferase reporter assay showed that miR-762 bound to the coding sequence of ND2. In addition, knockdown of endogenous ND2 significantly decreased intracellular ATP levels, increased ROS levels, reduced mitochondrial complex I enzyme activity and increased apoptotic cell death in cardiomyocytes, which was induced by A/R treatment. Furthermore, we found that the inhibitory effect of miR-762 downregulation was attenuated by ND2 knockdown. Thus, our findings suggest that miR-762 participates in the regulation of mitochondrial function and cardiomyocyte apoptosis by ND2, a core assembly subunit of mitochondrial complex I. Our results revealed that mitochondrial miR-762, as a new player in mitochondrial dysfunction, may provide a new therapeutic target for myocardial infarction.
Collapse
|