1
|
Kucher AN, Koroleva IA, Nazarenko MS. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:130-147. [PMID: 38467550 DOI: 10.1134/s0006297924010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Aksana N Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Iuliia A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
2
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
3
|
Song B, Huang Y, Ma J, Yu L, Yu Y, Peng C, Wu W. Construction and Analysis of ceRNA Networks Reveal the Key Genes Associated with Bovine Herpesvirus Type 1 Infection. Infect Drug Resist 2023; 16:5729-5740. [PMID: 37670981 PMCID: PMC10476657 DOI: 10.2147/idr.s411034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Background Virus infection can cause the changes of lncRNA expression levels to regulate the interaction between virus and host, but the relationship between BHV-1 infection and lncRNA has not been reported. Methods In this study, in order to reveal the molecular mechanism of RNA in BoHV-1 infection, the Madin-Darby bovine kidney (MDBK) cells were infected with BoHV-1, transcriptome sequencing were performed by next-generation sequencing at 18 h or 24 h or 33 h of viral infection and then based on the competitive endogenous RNA (ceRNA) theory, lncRNA-miRNA-mRNA networks were constructed using these high-throughput sequencing data. The network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation and exploration of ncRNA ceRNAs in BoHV-1 infection. Results The results showed that 48 lncRNAs, 123 mRNAs and 20 miRNAs as differentially expressed genes, and the mitogen activated protein kinase (MAPK) pathway and calcium signaling pathway were significantly enriched in the ceRNA network. Some differentially expressed lncRNA genes were randomly selected for verification by RT-qPCR, and the results showed that their expression trend was consistent with the results of transcriptome sequencing data. Conclusion This study revealed that BoHV-1 infection can affect the expression of RNAs in MDBK cells and the regulation of ceRNA network to carry out corresponding biological functions in the host, but further experimental studies are still necessary to prove the hub genes function in ceRNA network and the molecular mechanism in BoHV-1 infection.
Collapse
Affiliation(s)
- Baifen Song
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yanmei Huang
- The College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Jinzhu Ma
- The College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Liquan Yu
- The College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Yongzhong Yu
- The College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Chen Peng
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wenxue Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Xiong T, Wang Y, Zhang Y, Yuan J, Zhu C, Jiang W. lncRNA AC005224.4/miR-140-3p/SNAI2 regulating axis facilitates the invasion and metastasis of ovarian cancer through epithelial-mesenchymal transition. Chin Med J (Engl) 2023; 136:1098-1110. [PMID: 36939239 PMCID: PMC10228486 DOI: 10.1097/cm9.0000000000002201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer. METHODS LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 . RESULTS AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis. CONCLUSION AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.
Collapse
Affiliation(s)
- Tingchuan Xiong
- Department of Gynecologic Surgery, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, Urumqi 830011, China
| | - Yinghong Wang
- Center of Heath Management, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi 830011, China
| | - Yuan Zhang
- Department of Clinical Laboratory, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, Urumqi 830011, China
| | - Jianlin Yuan
- Department of Gynecologic Surgery, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, Urumqi 830011, China
| | - Changjun Zhu
- Laboratory of Molecular and Cellular Systems Biology, College of Life Science, Tianjin Normal University, Tianjin 300387, China
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, Urumqi 830011, China
- State Key Laboratory of Molecular Oncology, National Cancer center Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
5
|
Chen L, Wang S, Wang Z, Liu Y, Xu Y, Yang S, Xue G. Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:955838. [PMID: 35990982 PMCID: PMC9386163 DOI: 10.3389/fcvm.2022.955838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Various studies have highlighted the role of circular RNAs (circRNAs) as critical molecular regulators in cardiovascular diseases, but its role in abdominal aortic aneurysm (AAA) is unclear. This study explores the potential molecular mechanisms of AAA based on the circRNA-microRNA (miRNA)-mRNA competing endogenous RNA (ceRNA) network and immune cell infiltration patterns. Methods The expression profiles of circRNAs (GSE144431) and mRNAs (GSE57691 and GSE47472) were obtained from the Gene Expression Omnibus (GEO). Then, the differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) between AAA patients and healthy control samples, and the target miRNAs of these DEmRNAs and DEcircRNAs were identified. Based on the miRNA-DEmRNAs and miRNA-DEcircRNAs pairs, the ceRNA network was constructed. Furthermore, the proportion of the 22 immune cell types in AAA patients was assessed using cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The expressions of key genes and immune cell infiltration were validated using clinical specimens. Results A total of 214 DEmRNAs were identified in the GSE57691 and GSE47472 datasets, and 517 DEcircRNAs were identified in the GSE144431 dataset. The ceRNA network included 19 circRNAs, 36 mRNAs, and 68 miRNAs. Two key genes, PPARG and FOXO1, were identified among the hub genes of the established protein-protein interaction between mRNAs in the ceRNA network. Moreover, seven types of immune cells were differentially expressed between AAA patients and healthy control samples. Hub genes in ceRNA, such as FOXO1, HSPA8, and RAB5C, positively correlated with resting CD4 memory T cells or M1 macrophages, or both. Conclusion In conclusion, a ceRNA interaction axis was constructed. The composition of infiltrating immune cells was analyzed in the abdominal aorta of AAA patients and healthy control samples. This may help identify potential therapeutic targets for AAA.
Collapse
Affiliation(s)
- Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuangshuang Wang
- Songyuan Central Hospital, Songyuan Children's Hospital, Songyuan, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuting Liu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Xu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Shuofei Yang
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Guanhua Xue
| |
Collapse
|
6
|
Xin H, He X, Li J, Guan X, Liu X, Wang Y, Niu L, Qiu D, Wu X, Wang H. Profiling of the full-length transcriptome in abdominal aortic aneurysm using nanopore-based direct RNA sequencing. Open Biol 2022; 12:210172. [PMID: 35104432 PMCID: PMC8807055 DOI: 10.1098/rsob.210172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common and serious disease with a high mortality rate, but its genetic determinants have not been fully identified. In this feasibility study, we aimed to elucidate the transcriptome profile of AAA and further reveal its molecular mechanisms through the Oxford Nanopore Technologies (ONT) MinION platform. Overall, 9574 novel transcripts and 781 genes were identified by comparing and analysing the redundant-removed transcripts of all samples with known reference genome annotations. We characterized the alternative splicing, alternative polyadenylation events and simple sequence repeat (SSR) loci information based on full-length transcriptome data, which would help us further understand the genome annotation and gene structure of AAA. Moreover, we proved that ONT methods were suitable for the identification of lncRNAs via identifying the comprehensive expression profile of lncRNAs in AAA. The results of differentially expressed transcript (DET) analysis showed that a total of 7044 transcripts were differentially expressed, of which 4278 were upregulated and 2766 were downregulated among two groups. In the KEGG analysis, 4071 annotated DETs were involved in human diseases, organismal systems and environmental information processing. These pilot findings might provide novel insights into the pathogenesis of AAA and provide new ideas for the optimization of personalized treatment of AAA, which is worthy of further study in subsequent studies.
Collapse
Affiliation(s)
- Hai Xin
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xingqiang He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, People's Republic of China
| | - Jun Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xiaomei Guan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xukui Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Yuewei Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Liyuan Niu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Deqiang Qiu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Haofu Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| |
Collapse
|
7
|
Construction of the circRNA-miRNA-mRNA Regulatory Network of an Abdominal Aortic Aneurysm to Explore Its Potential Pathogenesis. DISEASE MARKERS 2021; 2021:9916881. [PMID: 34777635 PMCID: PMC8589483 DOI: 10.1155/2021/9916881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023]
Abstract
Background Abdominal aortic aneurysm (AAA) is a progressive cardiovascular disease, which is a permanent and localized dilatation of the abdominal aorta with potentially fatal consequence of aortic rupture. Dysregulation of circRNAs is correlated with the development of various pathological events in cardiovascular diseases. However, the function of circRNAs in abdominal aortic aneurysm (AAA) is unknown and remains to be explored. This study is aimed at determining the regulatory mechanisms of circRNAs in AAAs. This study was aimed at exploring the underlying molecular mechanisms of abdominal aortic aneurysms based on the competing endogenous RNA (ceRNA) regulatory hypothesis of circRNA, miRNA, and mRNA. Methods The expression profiles of circRNAs (GSE144431), miRNAs (GSE62179), and mRNAs (GSE7084, GSE57691, and GSE47472) in human tissue sample from the aneurysm group and normal group were obtained from the Gene Expression Omnibus database, respectively. The circRNA-miRNA-mRNA network was constructed by using Cytoscape 3.7.2 software; then, the protein-protein interaction (PPI) network was constructed by using the STRING database, and the hub genes were identified by using the cytoHubba plug-in. The circRNA-miRNA-hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in AAAs. Results The present study identified 40 differentially expressed circRNAs (DECs) in the GSE144431, 90 differentially expressed miRNAs (DEmiRs) in the GSE62179, and 168 differentially expressed mRNAs (DEGs) with the same direction regulation (130 downregulated and 38 upregulated) in the GSE7084, GSE57691, and GSE47472 datasets identified regarding AAAs. The miRNA response elements (MREs) of three DECs were then predicted. Four overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 17 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of 4 miRNAs with 168 DEGs. Furthermore, the circRNA-miRNA-mRNA network was constructed through 3 circRNAs, 4 miRNAs, and 17 mRNAs, and three hub genes (SOD2, CCR7, and PGRMC1) were identified. Simultaneously, functional enrichment and pathway analysis were performed within genes in the circRNA-miRNA-mRNA network. Three of them (SOD2, CCR7, and PGRMC1) were suggested to be crucial based on functional enrichment, protein-protein interaction, and ceRNA network analysis. Furthermore, the expression of SOD2 and CCR7 may be regulated by hsa_circ_0011449/hsa_circ_0081968/hsa-let-7f-5p; the expression of PGRMC1 may be regulated by hsa_circ_0011449/hsa_circ_0081968-hsa-let-7f-5p/hsa-let-7e-5p. Conclusion In conclusion, the ceRNA interaction axis we identified may be an important target for the treatment of abdominal aortic aneurysms. This study provided further understanding of the potential pathogenesis from the perspective of the circRNA-related competitive endogenous RNA network in AAAs.
Collapse
|
8
|
Li T, Wang T, Yan L, Ma C. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks. Exp Ther Med 2021; 22:1468. [PMID: 34737808 PMCID: PMC8561771 DOI: 10.3892/etm.2021.10903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder and, therefore, investigation into its underlying mechanisms in light of the competing endogenous RNAs (ceRNAs) hypothesis has gradually increased. However, there is still lacking systematic analysis on AAA-associated circular RNA (circRNA)-microRNA (miRNA/miR)-messenger RNA (mRNA) interaction networks based on bioinformatics methods. The present study attempted to identify novel molecular biomarkers for AAA by profiling circRNA-miRNA-mRNA networks using three public microarray datasets (GSE7084, GSE57691 and GSE144431). A total of 135 differentially expressed genes (DEGs) and 142 differentially expressed circRNAs were detected using the limma R package with the statistical threshold of P<0.05 and |log2fold change (FC)| >1.5. In addition, 12 circRNA-miRNA-mRNA axes were identified to construct upregulated and downregulated ceRNA networks using Cytoscape. Based on molecular complex detection algorithm, (hsa_circ_0057691/0092108/0006845/0082182)- miR-330-5p-calponin 1 (CNN1) and (hsa_circ_0061482/0011450/0008351/0004121)-miR-326-CD8a molecule (CD8A) were recognized as the center axes in ceRNA networks. Reverse transcription-quantitative PCR results verified the significant downregulation of CNN1 and upregulation of CD8A in human AAA tissues (P<0.05). In addition, four upregulated circRNA/mRNA axes, and five downregulated circRNA/mRNA axes were revealed to have possible biological functions in the pathogenesis of AAA using the Cytoscape software. Receiver operating characteristic analysis demonstrated the accuracy of these nine DEGs involved in these axes for AAA diagnosis with area under the curves >0.80. The present study revealed novel circRNA-miRNA-mRNA networks associated with AAA, especially for CNN1 and CD8A axes with the potential function of ‘focal adhesion’ and ‘immune response’, respectively. Overall, the present findings may provide evidence to explore the implicated ceRNAs in the molecular mechanisms and as novel biomarkers for AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianlong Wang
- The First Clinical College of China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Li T, Wang T, Jing J, Sun L. Expression Pattern and Clinical Value of Key m6A RNA Modification Regulators in Abdominal Aortic Aneurysm. J Inflamm Res 2021; 14:4245-4258. [PMID: 34511965 PMCID: PMC8412829 DOI: 10.2147/jir.s327152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Aberrant expression of N6-methyladenosine (m6A) RNA modification regulators plays a critical role in a variety of human diseases. However, their implication in abdominal aortic aneurysm (AAA) remains largely unknown. Herein, we sought to explore the general expression pattern and potential functions of m6A regulators in AAA. Methods We analyzed gene expression data of m6A regulators in human AAA and normal tissues from public GEO database. The R package and other tools such as m6A2Target database, Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set variation analysis (GSVA), Search Tool for the Retrieval of Interacting Genes (STRING), starBase, miRDB and Cytoscape software were applied for bioinformatics analysis to investigate the downstream molecular mechanisms and upstream regulatory mechanisms for distinctly expressed regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to validate the expression of key m6A regulators in our collected human AAA specimens. Results We found that METTL14 and HNRNPC were the downregulated m6A regulators, and RBM15B was the upregulated methylation transferase in human AAA. The modified genes were primarily enriched in RNA catabolic process, regulation of translation, focal adhesion, transcription coregulator activity, ribosome, RNA transport, cell cycle, et al. METTL14, HNRNPC and RBM15B levels were correlated with the immune infiltration degree of Tcm, macrophages, mast cells, Tgd and NK CD56bright cells. A total of 154 and 76 target genes of three regulators were separately involved in body metabolism and autophagy in AAA disease, and their interactive relationships and hub genes were identified. The lncRNA-miRNA-mRNA interaction regulatory networks were also constructed for METTL14, HNRNPC and RBM15B. Based on our clinical tissue and serum samples, METTL14 exhibited lower expression levels in AAA and its rupture type, and low METTL14 expression was associated with high levels of WBC and CRP (all P < 0.05). Conclusion Our study presents an overview of the expression pattern and functional significance of m6A regulators in human AAA. Our findings will provide a valuable resource that may guide both mechanistic and therapeutic analyses about the role of key m6A regulators in AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianlong Wang
- The First Clinical College of China Medical University, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Li T, Wang T, Zhao X. Profiles of immune infiltration in abdominal aortic aneurysm and their associated marker genes: a gene expression-based study. ACTA ACUST UNITED AC 2021; 54:e11372. [PMID: 34495251 PMCID: PMC8427746 DOI: 10.1590/1414-431x2021e11372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
Immune-mediated inflammation plays a key role in the pathology of abdominal aortic aneurysm (AAA). We aimed to use a computational approach to profile the immune infiltration patterns and related core genes in AAA samples based on the overexpression of gene signatures. The microarray datasets of AAA and normal abdominal tissues were acquired from gene expression omnibus (GEO) database. We evaluated the composition of immune infiltrates through microenvironment cell populations (MCP)-counter. Weighted gene correlation network analysis (WGCNA) was employed to construct the co-expression network and extract gene information in the most relevant module. Functional and pathway enrichment analysis was performed and immune infiltration related core genes were screened. AAA tissues had a higher level of infiltration by cytotoxic lymphocytes, NK cells, T cells, fibroblasts, myeloid dendritic cells, and neutrophils than normal aorta. The red module was strongly correlated with the infiltrating levels of T cells and cytotoxic lymphocytes. Gene ontology (GO) and pathway analyses revealed that genes in the most relevant module were mainly enriched in T cell activation, regulation of lymphocyte activation, cytokine-cytokine receptor interaction, and chemokine signaling pathway, etc. The expression of GZMK, CCL5, GZMA, CD2, and EOMES showed significant correlations with cytotoxic lymphocytes, while CD247, CD2, CD6, RASGRP1, and CD48 expression were positively associated with T cell infiltration. In conclusion, we comprehensively analyzed profiles of infiltrated immune cells in AAA tissues and their associated marker genes. Our data may provide a novel clue to indicate the underlying molecular mechanisms of AAA formation in terms of immune infiltration.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, China
| | - Tianlong Wang
- The First Clinical College of China Medical University, the First Hospital of China Medical University, Shenyang, China
| | - Xin Zhao
- Department of Operation Room, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
12
|
STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3. Biosci Rep 2021; 40:221717. [PMID: 31868202 PMCID: PMC6960067 DOI: 10.1042/bsr20193299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were viewed as crucial participants in the pathogenesis of abdominal aortic aneurysm (AAA). LncRNA NEAT1 was recognized as an oncogenic gene in various diseases. However, its function and mechanism in AAA were not precisely documented. Here, we explored the functional role and molecular mechanism of NEAT1 in AAA. Functionally, the effect of NEAT1 on the proliferation was assessed by CCK-8 and EdU assay, while its impact on the apoptosis was evaluated through caspase-3/9 activity and TUNEL assays. As a result, we found that NEAT1 knockdown enhanced the proliferation and impaired the apoptosis of vascular smooth muscle cells (VSMCs). Reversely, overexpressed NEAT1 exerted anti-proliferation and pro-apoptosis effects in VSMCs. Mechanically, we found that STAT3 acted as a transcription factor and contributed to NEAT1 transcription by ChIP and luciferase reporter assays. In addition, NEAT1 was confirmed as a sponge of miR-4688 and thereby increase the expression of TULP3 in VSMCs via RIP assay and RNA pull-down assay. Rescue experiments indicted that TULP3 overexpressing countervailed the impact of NEAT1 depletion on AAA biological processes. Conclusively, lncRNA NEAT1 induced by STAT3 was identified as a ceRNA and facilitated AAA formation by targeting miR-4688/TULP3 axis.
Collapse
|
13
|
The Identification and Verification of Key Long Noncoding RNAs in Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2020:2094320. [PMID: 33490236 PMCID: PMC7789472 DOI: 10.1155/2020/2094320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a neurological disease with high rates of mortality and disability. The pathogenesis of stroke is acute focal injury of the central nervous system, leading to impaired neural function. Ischemic stroke accounts for the majority of cases. At present, the exact molecular mechanism of ischemic stroke remains unclear. Studies have shown that long noncoding RNAs (lncRNAs) have an important regulatory role in biological processes, participating in the regulation of transcription and affecting the processing and splicing of mRNAs. Abnormal lncRNA expression is associated with various diseases, including diseases of the nervous system. To identify and verify the key lncRNAs in ischemic stroke, we downloaded gene expression data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) and obtain differentially expressed lncRNAs, miRNAs, and mRNAs by bioinformatics analysis. Cytoscape was used to reconstruct a lncRNA-miRNA-mRNA network on the basis of the competitive endogenous RNA theory. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the mRNAs regulated by lncRNAs in the lncRNA-miRNA-mRNA network. The resulting lncRNA-miRNA-mRNA network was composed of 91 lncRNA nodes, 70 mRNA nodes, 21 miRNA nodes, and 288 edges. GO analysis and KEGG pathway analysis have shown that 191 GO terms and 23 KEGG pathways were enriched. Finally, we found that four key lncRNAs were highly correlated with ischemic stroke and could be used as potential new targets for treatment.
Collapse
|
14
|
Ye S, Zhu S, Feng L. LncRNA ANRIL/miR-125a axis exhibits potential as a biomarker for disease exacerbation, severity, and inflammation in bronchial asthma. J Clin Lab Anal 2019; 34:e23092. [PMID: 31821602 PMCID: PMC7083478 DOI: 10.1002/jcla.23092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the correlation of lncRNA ANRIL/miR‐125a axis with disease risk, severity, and inflammatory cytokines of bronchial asthma. Methods Plasma samples from 90 patients with bronchial asthma at exacerbation (BA‐E), 90 with bronchial asthma at remission (BA‐R), and 90 controls (healthy subjects) were collected. The qPCR was used for lncRNA ANRIL and miR‐125a detection, and ELISA was adopted for pro‐inflammatory cytokines detection. Participants’ characteristics, laboratory tests, and the pulmonary ventilation function examinations were recorded. Results LncRNA ANRIL was negatively correlated with miR‐125a in BA‐E patients, BA‐R patients, and controls. LncRNA ANRIL/miR‐125a axis was upregulated in BA‐E patients compared with BA‐R patients and controls. ROC curve analyses illuminated that lncRNA ANRIL/miR‐125a axis was of good value in distinguishing BA‐E patients from BA‐R patients and controls. As to pulmonary ventilation functions, lncRNA ANRIL/miR‐125a axis was negatively associated with FEV1/FVC and FEV1%predicted in bronchial asthma patients, especially in BA‐E patients. Regarding inflammation, lncRNA ANRIL/miR‐125a axis was positively correlated with pro‐inflammatory cytokines in bronchial asthma patients, especially in BA‐E patients. In addition, lncRNA ANRIL/miR‐125a axis was positively correlated with exacerbation severity in BA‐E patients. Conclusion LncRNA ANRIL/miR‐125a is potentially indicative of disease exacerbation, exacerbation severity, and inflammation for bronchial asthma, while these findings are preliminary and need further confirmation.
Collapse
Affiliation(s)
- Shenglan Ye
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Zhu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Feng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Zhou Q, Yu Q, Gong Y, Liu Z, Xu H, Wang Y, Shi Y. Construction of a lncRNA-miRNA-mRNA network to determine the regulatory roles of lncRNAs in psoriasis. Exp Ther Med 2019; 18:4011-4021. [PMID: 31611939 PMCID: PMC6781786 DOI: 10.3892/etm.2019.8035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder that impairs the quality of life of affected patients. Emerging studies indicate that certain long non-coding RNAs (lncRNAs) have important roles in psoriasis. However, the exact functions of lncRNAs and their regulatory mechanisms as competitive endogenous RNAs (ceRNAs) in psoriasis have remained to be fully elucidated. In the present study, differentially expressed lncRNAs, microRNAs (miRNAs) and mRNAs were identified by analyzing public datasets, and a psoriasis-associated lncRNA-miRNA-mRNA network was constructed based on the ceRNA theory. Furthermore, previously validated abnormally expressed miRNAs in psoriasis were identified by a systematic literature search in the PubMed and Web of Science databases, and a specific miRNA-associated lncRNA-miRNA-mRNA sub-network was extracted. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using DAVID 6.8. A total of 253 lncRNAs, 106 miRNAs and 1,156 mRNAs were identified as being differentially expressed between psoriasis skin and healthy control skin. The present study identified two key lncRNAs that may potentially have a role in the pathogenesis of psoriasis: AL035425.3 and Prader Willi/Angelman region RNA 6. This integrative analysis enhances the understanding of the molecular mechanism of psoriasis and may provide novel therapeutic targets for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qianqian Zhou
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qian Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhicui Liu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Xu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yao Wang
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yuling Shi
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
16
|
Wang S, Li J, Yang X. Long Non-Coding RNA LINC00525 Promotes the Stemness and Chemoresistance of Colorectal Cancer by Targeting miR-507/ELK3 Axis. Int J Stem Cells 2019; 12:347-359. [PMID: 31242722 PMCID: PMC6657946 DOI: 10.15283/ijsc19041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives This study aims to explore the effects of a long non-coding RNA, LINC00525, on colorectal cancer (CRC) and its underlying molecular mechanisms. Methods The qPCR, MTT, colony formation, Western blotting, Luciferase reporter and biotin pull-down, shRNA knockdown and DNA fragmentation assays were performed in this study. Results High expressions of LINC00525 were associated with poor prognosis of CRC patients. LINC00525 knockdown decreased stemness properties and increased sensitivities to oxaliplatin. MiR-507 was a direct target of LINC00525 and overexpression of miR-507 significantly decreased abilities of tumorsphere formation and cell growth. Overexpression of miR-507 resulted in a decrease of expression of cancer stem cell markers and the increase of apoptosis rates. MiR-507 regulated the expression of ELK3. In addition, LINC00525 knockdown decreased the expression of ELK3. Restoration of ELK3 expression abrogated the effects of LINC00525 knockdown. LINC00525 could be served as prognostic marker of CRC. Conclusions LINC00525 enhanced stemness properties and increased sensitivities of CRC cells to oxaliplatin by targeting miR-507/ELK3 axis.
Collapse
Affiliation(s)
- Shunsheng Wang
- Department of Colorectal Surgery, Yidu Central Hospital of Weifang City, Qingzhou, China
| | - Jing Li
- Department of Colorectal Surgery, Yidu Central Hospital of Weifang City, Qingzhou, China
| | - Xiaopeng Yang
- Department of Colorectal Surgery, Yidu Central Hospital of Weifang City, Qingzhou, China
| |
Collapse
|
17
|
Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO. PVT1 Signaling Is a Mediator of Cancer Progression. Front Oncol 2019; 9:502. [PMID: 31249809 PMCID: PMC6582247 DOI: 10.3389/fonc.2019.00502] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that PVT1 has oncogenic properties and regulates proliferation and growth of many cancers. Themolecular mechanisms of action of PVT1 are mediated, in part, by microRNAs (miRNAs). However, some well-established transcription factors involved in cancer cell proliferation share a common thread of microRNA associations with PVT1. Furthermore, these microRNAs are also involved in mechanisms that lead to the development of drug resistance in cancer cells. While several microRNAs have been implicated directly in PVT1-mediated tumorigenesis, significant steps need to be taken to elucidate these important relationships. We synthesize the current knowledge of the miRNAs and associated genes by which PVT1 contributes to tumorigenesis. Overall, the trend suggests a negative correlation of microRNA expression with PVT1. It is clear that future studies involving PVT1 should be carried out in conjunction with microRNA analysis and should include large scale lncRNA-miRNA-mRNA network analysis. Likewise, the relationship between established transcription factors such as p53 and MYC, and processes like epithelial-mesenchymal transition may offer valuable insight into the yet unknown mechanisms of PVTI-mediated cancer progression via microRNA-dependent signaling networks.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Akintunde T Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States.,Hunter College Center for Cancer Health Disparities Research, Hunter College of The City University of New York, New York, NY, United States
| |
Collapse
|