1
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
2
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
3
|
Mesfin Z, Ali A, Abagero A, Asefa Z. Dengue Fever Outbreak Investigation in Werder Town, Dollo Zone, Somali Region, Ethiopia. Infect Drug Resist 2022; 15:7207-7217. [PMID: 36514800 PMCID: PMC9741851 DOI: 10.2147/idr.s368562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dengue fever (DF) is a mosquito-borne disease caused by the dengue virus. DF is endemic to many tropical and subtropical countries around the world. In Ethiopia, DF emerged in 2013 and caused a serious public health problem. Objective We investigated the outbreak to describe by time, place, person, and to identify risk factors associated with the outbreak in Werder town, Dollo Zone, Somali Region, Ethiopia. Methods Descriptive and case-control studies (1:2 ratio) were conducted. We used the World Health Organization (WHO) case definition to identify cases in Werder town from December 10, 2020, to January 4, 2021. Controls were selected from the same town that did not suffer from DF. Serum samples were tested by reverse transcription polymerase chain reaction (RT-PCR) to detect the dengue virus and to identify serotypes. A structured questionnaire was used to collect socio-demographic, behavioural, and environmental characteristics. Results We identified a total of 57 cases and 114 controls. The overall attack rate was 334.41/100,000 with a zero case fatality rate. Six out of twenty serum samples tested positive for the DEN-3 serotype. In multivariate analysis, not hearing of DF (Adjusted odd ratio (AOR): 2.2, 95% CI: 1.015-4.701), not knowing the mode of transmission (AOR: 2.9, 95% CI: 1.338-6.831), not using long-lasting insecticidal net (LLITN) (AOR: 4.4, 95% CI: 1.592-12.330) and not spraying insecticide (AOR: 3.6, 95% CI: 1.591-8.098) were statistically significant risk factors associated with DF outbreak. However, wearing long sleeves (AOR: 0.435, 95% CI: 0.206-0.918) was a protective factor for the DF outbreak. Conclusion DF outbreak in Werder town has been confirmed. The present study provides evidence-based information regarding the identified risk factors that have contributed to the occurrence of DF outbreaks. We recommended implementing vector control measures and strengthening dengue surveillance systems is strongly advised.
Collapse
Affiliation(s)
- Zerihun Mesfin
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Livestock and Fishery Resource Sector, Ministry of Agriculture, Addis Ababa, Ethiopia
| | - Ahmed Ali
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abdulnasir Abagero
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zewdu Asefa
- Department of Early Warning and Information System Management Centre for Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Yan G, Yan S, Wang J, Lei S, Tian W, Yue X, Zhang Y. MicroRNA-296-5p inhibits cell proliferation by targeting HMGA1 in colorectal cancer. Exp Ther Med 2021; 22:793. [PMID: 34093749 PMCID: PMC8170657 DOI: 10.3892/etm.2021.10225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023] Open
Abstract
An increasing body of evidence indicates the involvement of microRNAs (miRNAs/miRs) in the initiation and progression of colorectal cancer (CRC). miR-296-5p was recently identified as a tumor suppressor in a variety of human cancer types; however, its function in CRC remains largely unknown. The present study demonstrated that the expression of miR-296-5p was significantly downregulated in CRC tissues and cell lines. The overexpression of miR-296-5p markedly inhibited proliferation, and induced cell cycle arrest and apoptosis in CRC cells. Bioinformatics analysis suggested that high mobility group AT-hook 1 (HMGA1) may be a target of miR-296-5p in CRC cells. Further experiments showed that miR-296-5p bound the 3'-untranslated region of HMGA1 and decreased its expression in CRC cells. HMGA1 was overexpressed in CRC tissues and was inversely correlated with the expression of miR-296-5p. The restoration of HMGA1 significantly reversed the inhibitory effect of miR-296-5p on the proliferation of CRC cells. Overall, the findings of the present study indicate that miR-296-5p suppressed the progression of CRC, at least partially via targeting HMGA1. Thus, miR-296-5p is a potential target for novel therapies in CRC.
Collapse
Affiliation(s)
- Guohui Yan
- The Medical Department of the Xiamen University, Xiamen, Fujian 361000, P.R. China
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Department of Ultrasound, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shuidi Yan
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jiajia Wang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shen Lei
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Weimin Tian
- Department of Paediatrics, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xin Yue
- Department of Imaging, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yang Zhang
- The Medical Department of the Xiamen University, Xiamen, Fujian 361000, P.R. China
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
5
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [PMID: 32940190 DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
6
|
Yang YM, Kuen DS, Chung Y, Kurose H, Kim SG. Gα 12/13 signaling in metabolic diseases. Exp Mol Med 2020; 52:896-910. [PMID: 32576930 PMCID: PMC7338450 DOI: 10.1038/s12276-020-0454-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
As the key governors of diverse physiological processes, G protein-coupled receptors (GPCRs) have drawn attention as primary targets for several diseases, including diabetes and cardiovascular disease. Heterotrimeric G proteins converge signals from ~800 members of the GPCR family. Among the members of the G protein α family, the Gα12 family members comprising Gα12 and Gα13 have been referred to as gep oncogenes. Gα12/13 levels are altered in metabolic organs, including the liver and muscles, in metabolic diseases. The roles of Gα12/13 in metabolic diseases have been investigated. In this review, we highlight findings demonstrating Gα12/13 amplifying or dampening regulators of phenotype changes. We discuss the molecular basis of G protein biology in the context of posttranslational modifications to heterotrimeric G proteins and the cell signaling axis. We also highlight findings providing insights into the organ-specific, metabolic and pathological roles of G proteins in changes associated with specific cells, energy homeostasis, glucose metabolism, liver fibrosis and the immune and cardiovascular systems. This review summarizes the currently available knowledge on the importance of Gα12/13 in the physiology and pathogenesis of metabolic diseases, which is presented according to the basic understanding of their metabolic actions and underlying cellular and molecular bases. Understanding the activities of two members of a vital category of proteins called G proteins, which initiate metabolic changes when signaling molecules bind to cells, could lead to new therapies for many diseases. Researchers in South Korea and Japan, led by Sang Geon Kim at Seoul National University, review the significance of the Gα12 and Gα13 proteins in diseases characterised by significant changes in metabolism, including liver conditions and disorders of the cardiovascular and immune systems. Specific roles for the proteins have been identified by a variety of methods, including studying the effect of disabling the genes that code for them in mice. Recent insights suggest that drugs interfering with the activity of these Gα proteins might help treat many conditions in which the molecular signalling networks involving the proteins are disrupted.
Collapse
Affiliation(s)
- Yoon Mee Yang
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Da-Sol Kuen
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yeonseok Chung
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Cheng J, Yang A, Cheng S, Feng L, Wu X, Lu X, Zu M, Cui J, Yu H, Zou L. Circulating miR-19a-3p and miR-483-5p as Novel Diagnostic Biomarkers for the Early Diagnosis of Gastric Cancer. Med Sci Monit 2020; 26:e923444. [PMID: 32487978 PMCID: PMC7297033 DOI: 10.12659/msm.923444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are attracting substantial interest as promising noninvasive biomarkers for gastric cancer (GC). Our study aimed to identify circulating miRNAs that are potential noninvasive markers for precancerous lesions and early gastric cancers (EGCs). Material/Methods Plasma specimens were obtained from 58 gastritis subjects, 54 patients with precancerous lesions, and 38 EGC patients for study. Results Significant differences in the plasma expression levels of miR-19a-3p, miR-22-3p, miR-146a-5p, and miR-483-5p (all P<0.05) were observed between EGC patients and gastritis subjects. Multivariable analysis showed that age (OR, 1.054; 95% CI, 1.006–1.104), miR-19a-3p expression (OR, 3.676; 95% CI, 1.914–7.061), and miR-483-5p expression (OR, 1.589; 95% CI, 1.242–2.033) were independently associated with EGCs and precancerous lesions. A combined diagnostic model incorporating these 3 variables for the prediction of EGCs and precancerous lesions was derived. The area under the receiver operating characteristic curve (AUC) of the model was 0.84; the sensitivity was 87.7% and the specificity was 62.8% at the cutoff value of −0.08. Conclusions Plasma miR-19a-3p and miR-483-5p are promising and powerful noninvasive markers for the early detection of GC. Patients are more willing to undergo noninvasive diagnostic procedures than gastroscopy for cancer screening, economizing limited medical resources.
Collapse
Affiliation(s)
- Jieyao Cheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Xi Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xinghua Lu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Ming Zu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jianfang Cui
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Hang Yu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Long Zou
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China (mainland)
| |
Collapse
|
8
|
Januszyk K, Januszyk P, Grabarek BO, Boroń D, Oplawski M. The Influence of Salinomycin on the Expression Profile of mRNAs Encoding Selected Caspases and MiRNAs Regulating their Expression in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1505-1515. [PMID: 32407273 PMCID: PMC8206191 DOI: 10.2174/1389201021666200514095043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Apoptosis could take place in the pathway dependent on death receptors or pathways dependent on mitochondria. In both, a key role is played by enzymes with protease activity, known as caspases. AIM The aim of this study was to assess the variances in the expression pattern of caspase-dependent signaling pathways in the endometrial cancer cell line when treated with salinomycin. Additionally, the changes in the level of miRNA that potentially regulate these mRNAs were evaluated. MATERIALS AND METHODS Endometrial cancer cells were treated with 1 μM of salinomycin for 12, 24 and 48 hours. Untreated cells made up the control culture. The molecular analysis consisted of screening mRNA and miRNA microarray expression profiles of caspases, and the evaluation of the expression of caspases 3,8 and 9 by RTqPCR, also on the protein level. RESULTS AND DISCUSSION It was observed that 5 of the 14 differentiating mRNAs were commonly found for all incubation times of the cells and they corresponded with CASP3, CASP8, and CASP9 genes. The highest impact probability was determined between CASP3(up-regulated) and hsa- miR- 30d (FC -2.01), CASP8 (down-regulated) and hsa-miR-21 (FC +1.39) and between CASP9 (upregulated) and hsa-miR-1271 (FC +1.71). CONCLUSION Salinomycin induces the apoptosis of endometrial cancer cells. The largest increase in activity was noted for caspases 3 and 9, while the expression of caspase 8 was decreased. Salinomycin causes a regulatory effect on the transcriptomes of mRNA and miRNA in in vitro endometrial cancer cells.
Collapse
Affiliation(s)
- Krzysztof Januszyk
- Address correspondence to this author at the Faculty of Health Science, Public Higher Medical Professional School in Opole, Poland;, E-mail:
| | | | | | | | | |
Collapse
|
9
|
Tian YQ, Fan ZJ, Liu S, Wu YJ, Liu SY. Value of microRNAs in diagnosis and prognosis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:1278-1284. [DOI: 10.11569/wcjd.v27.i20.1278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some new treatment methods have been explored to delay the recurrence of colorectal cancer (CRC). Early diagnosis plays an important role in the improvement of curative effect. The conventional methods used to diagnose and monitor CRC are fecal occult blood test (FOBT) and colonoscopy. However, FOBT has an unsatisfactory sensitivity, while colonoscopy is expensive and invasive. As new biomarkers, microRNAs, which can be detected in CRC tissues, cells, and body fluid as tumor suppressors or oncogenes, can be used in early diagnosis, the monitoring of metastasis and treatment, as well prognostic evaluation of CRC. This article reviews the diagnostic and prognostic value of microRNAs in CRC.
Collapse
Affiliation(s)
- Ya-Qiong Tian
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Zhi-Juan Fan
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shuang Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yu-Jing Wu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shu-Ye Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| |
Collapse
|
10
|
LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol 2019; 53:443-452. [PMID: 31626590 PMCID: PMC6884931 DOI: 10.2478/raon-2019-0048] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer is one of the most frequent malignancies among females worldwide. Increasing evidence have indicated the participation of long noncoding RNAs (lncRNAs) in the progression and metastasis of cervical cancer. Our present study was conducted to explore the effects of lncRNA plasmacytoma variant translocation 1 (PVT1) on the progression of cervical cancer and the underlying mechanisms. Materials and methods Expressions of PVT1, miR-140-5p and Smad3 in cervical cancer cell lines were detected by qRT-PCR and western blotting. Bioinformatics analysis and luciferase assays were used to elucidate the potential correlations between PVT1, miR-140-5p and Smad3. The roles of PVT1 on the progression of cervical cancer cells were determined by transfecting sh-RNA through series function assays such as colony formation assay, wound healing assay, transwell assay. Results PVT1 and Smad3 were upregulated, and miR-140-5p was downregulated in cervical cancer cells. PVT1 could bind directly with miR-140-5p, and Smad3 was a downstream target of miR-140-5p. Inhibition of PVT1 could enhance expression of miR-140-5p, inhibit the expression of Smad3, significantly inhibited the proliferation, migration, invasion in cervical cancer cells. While transfection of miR-140-5p inhibitor could partially reverse the above changes in cervical cancer cells. Conclusions The results revealed that PVT1 could promote the proliferation and metastasis via increasing the Smad3 expression by sponging miR-140-5p, which might be a promising prognostic and therapeutic target for cervical cancer.
Collapse
|