1
|
Millan I, Pérez S, Rius-Pérez S, Asensi MÁ, Vento M, García-Verdugo JM, Torres-Cuevas I. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 2024:10.1038/s41390-024-03457-0. [PMID: 39317699 DOI: 10.1038/s41390-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals. METHODS The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study. RESULTS Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult. CONCLUSION Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult. IMPACT Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation. The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation. Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.
Collapse
Affiliation(s)
- Iván Millan
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Sergio Rius-Pérez
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain.
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Department of Physiology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
2
|
Shahzad T, Dong Y, Behnke NK, Brandner J, Hilgendorff A, Chao CM, Behnke J, Bellusci S, Ehrhardt H. Anti-CCL2 therapy reduces oxygen toxicity to the immature lung. Cell Death Discov 2024; 10:311. [PMID: 38961074 PMCID: PMC11222519 DOI: 10.1038/s41420-024-02073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Oxygen toxicity constitutes a key contributor to bronchopulmonary dysplasia (BPD). Critical step in the pathogenesis of BPD is the inflammatory response in the immature lung with the release of pro-inflammatory cytokines and the influx of innate immune cells. Identification of efficient therapies to alleviate the inflammatory response remains an unmet research priority. First, we studied macrophage and neutrophil profiles in tracheal aspirates of n = 103 preterm infants <29 weeks´ gestation requiring mechanical ventilation. While no differences were present at birth, a higher fraction of macrophages, the predominance of the CD14+CD16+ subtype on day 5 of life was associated with moderate/severe BPD. Newborn CCL-2-/- mice insufficient in pulmonary macrophage recruitment had a reduced influx of neutrophils, lower apoptosis induction in the pulmonary tissue and better-preserved lung morphometry with higher counts of type II cells, mesenchymal stem cells and vascular endothelial cells when exposed to hyperoxia for 7 days. To study the benefit of a targeted approach to prevent the pulmonary influx of macrophages, wildtype mice were repeatedly treated with CCL-2 blocking antibodies while exposed to hyperoxia for 7 days. Congruent with the results in CCL-2-/- animals, the therapeutic intervention reduced the pulmonary inflammatory response, attenuated cell death in the lung tissue and better-preserved lung morphometry. Overall, our preclinical and clinical datasets document the predominant role of macrophage recruitment to the pathogenesis of BPD and establish the abrogation of CCL-2 function as novel approach to protect the immature lung from hyperoxic injury.
Collapse
Affiliation(s)
- Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), German Lung Research Center (DZL), Feulgenstrasse 12, Giessen, Germany
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), German Lung Research Center (DZL), Feulgenstrasse 12, Giessen, Germany
| | - Nina K Behnke
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistrasse 15, Munich, Germany
| | - Julia Brandner
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistrasse 15, Munich, Germany
| | - Anne Hilgendorff
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistrasse 15, Munich, Germany
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München, German Center for Lung Research (DZL), Munich, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, Helios University Medical Center, Witten/Herdecke University, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), German Lung Research Center (DZL), Feulgenstrasse 12, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Germany German Lung Research Center (DZL), Aulweg 130, Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center (UGMLC), German Lung Research Center (DZL), Feulgenstrasse 12, Giessen, Germany.
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
3
|
Gao L, Yang P, Luo C, Lei M, Shi Z, Cheng X, Zhang J, Cao W, Ren M, Zhang L, Wang B, Zhang Q. Machine learning predictive models for grading bronchopulmonary dysplasia: umbilical cord blood IL-6 as a biomarker. Front Pediatr 2023; 11:1301376. [PMID: 38161441 PMCID: PMC10757373 DOI: 10.3389/fped.2023.1301376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives This study aimed to analyze the predictive value of umbilical cord blood Interleukin-6 (UCB IL-6) for the severity-graded BPD and to establish machine learning (ML) predictive models in a Chinese population based on the 2019 NRN evidence-based guidelines. Methods In this retrospective analysis, we included infants born with gestational age <32 weeks, who underwent UCB IL-6 testing within 24 h of admission to our NICU between 2020 and 2022. We collected their medical information encompassing the maternal, perinatal, and early neonatal phases. Furthermore, we classified the grade of BPD according to the 2019 NRN evidence-based guidelines. The correlation between UCB IL-6 and the grades of BPD was analyzed. Univariate analysis and ordinal logistic regression were employed to identify risk factors, followed by the development of ML predictive models based on XGBoost, CatBoost, LightGBM, and Random Forest. The AUROC was used to evaluate the diagnostic value of each model. Besides, we generated feature importance distribution plots based on SHAP values to emphasize the significance of UCB IL-6 in the models. Results The study ultimately enrolled 414 preterm infants, with No BPD group (n = 309), Grade 1 BPD group (n = 73), and Grade 2-3 BPD group (n = 32). The levels of UCB IL-6 increased with the grades of BPD. UCB IL-6 demonstrated clinical significance in predicting various grades of BPD, particularly in distinguishing Grade 2-3 BPD patients, with an AUROC of 0.815 (95% CI: 0.753-0.877). All four ML models, XGBoost, CatBoost, LightGBM, and Random Forest, exhibited Micro-average AUROC values of 0.841, 0.870, 0.851, and 0.878, respectively. Notably, UCB IL-6 consistently appeared as the most prominent feature across the feature importance distribution plots in all four models. Conclusion UCB IL-6 significantly contributes to predicting severity-graded BPD, especially in grade 2-3 BPD. Through the development of four ML predictive models, we highlighted UCB IL-6's importance.
Collapse
Affiliation(s)
- Linan Gao
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Pengkun Yang
- Computer Science and Technology, University of Science and Technology of China, Hefei, China
| | - Chenghan Luo
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyuan Lei
- Health Care Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanyang Shi
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Xinru Cheng
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Jingdi Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Wenjun Cao
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Miaomiao Ren
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Luwen Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Bingyu Wang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Qian Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| |
Collapse
|
4
|
Aslan M, Gokce IK, Turgut H, Tekin S, Cetin Taslidere A, Deveci MF, Kaya H, Tanbek K, Gul CC, Ozdemir R. Molsidomine decreases hyperoxia-induced lung injury in neonatal rats. Pediatr Res 2023; 94:1341-1348. [PMID: 37179436 DOI: 10.1038/s41390-023-02643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The study's objective is to evaluate if Molsidomine (MOL), an anti-oxidant, anti-inflammatory, and anti-apoptotic drug, is effective in treating hyperoxic lung injury (HLI). METHODS The study consisted of four groups of neonatal rats characterized as the Control, Control+MOL, HLI, HLI + MOL groups. Near the end of the study, the lung tissue of the rats were evaluated with respect to apoptosis, histopathological damage, anti-oxidant and oxidant capacity as well as degree of inflammation. RESULTS Compared to the HLI group, malondialdehyde and total oxidant status levels in lung tissue were notably reduced in the HLI + MOL group. Furthermore, mean superoxide dismutase, glutathione peroxidase, and glutathione activities/levels in lung tissue were significantly higher in the HLI + MOL group as compared to the HLI group. Tumor necrosis factor-α and interleukin-1β elevations associated with hyperoxia were significantly reduced following MOL treatment. Median histopathological damage and mean alveolar macrophage numbers were found to be higher in the HLI and HLI + MOL groups when compared to the Control and Control+MOL groups. Both values were increased in the HLI group when compared to the HLI + MOL group. CONCLUSIONS Our research is the first to demonstrate that bronchopulmonary dysplasia may be prevented through the protective characteristics of MOL, an anti-inflammatory, anti-oxidant, and anti-apoptotic drug. IMPACT Molsidomine prophylaxis significantly decreased the level of oxidative stress markers. Molsidomine administration restored the activities of antioxidant enzymes. Molsidomine prophylaxis significantly reduced the levels of inflammatory cytokines. Molsidomine may provide a new and promising therapy for BPD in the future. Molsidomine prophylaxis decreased lung damage and macrophage infiltration in the tissue.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Huseyin Kaya
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey.
| |
Collapse
|
5
|
Holzfurtner L, Shahzad T, Dong Y, Rekers L, Selting A, Staude B, Lauer T, Schmidt A, Rivetti S, Zimmer KP, Behnke J, Bellusci S, Ehrhardt H. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol Cell Pediatr 2022; 9:7. [PMID: 35445327 PMCID: PMC9021337 DOI: 10.1186/s40348-022-00137-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies and describes novel approaches to prevent BPD.
Collapse
Affiliation(s)
- Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Lisa Rekers
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ariane Selting
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Birte Staude
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Annesuse Schmidt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Stefano Rivetti
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022; 13:145. [PMID: 35379329 PMCID: PMC8978174 DOI: 10.1186/s13287-022-02821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. METHODS The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. RESULTS Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. CONCLUSIONS Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.
Collapse
Affiliation(s)
- Amany Solaiman
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
- Center of Excellence for Research in Regenerative Medicine and Its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ghada A Meheissen
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt.
| | - Soha Elatrebi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Rasha Said
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Nahed H Elsokkary
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| |
Collapse
|
7
|
Cahill KM, Gartia MR, Sahu S, Bergeron SR, Heffernan LM, Paulsen DB, Penn AL, Noël A. In utero exposure to electronic-cigarette aerosols decreases lung fibrillar collagen content, increases Newtonian resistance and induces sex-specific molecular signatures in neonatal mice. Toxicol Res 2022; 38:205-224. [PMID: 35415078 PMCID: PMC8960495 DOI: 10.1007/s43188-021-00103-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.
Collapse
Affiliation(s)
- Kerin M. Cahill
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Manas R. Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Sushant Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504 USA
| | - Sarah R. Bergeron
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Linda M. Heffernan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Daniel B. Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803 USA
| |
Collapse
|
8
|
Giusto K, Wanczyk H, Jensen T, Finck C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis Model Mech 2021; 14:dmm047753. [PMID: 33729989 PMCID: PMC7927658 DOI: 10.1242/dmm.047753] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.
Collapse
Affiliation(s)
- Kiersten Giusto
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, 06106 CT, USA
- Department of Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
9
|
Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. J Clin Med 2020; 9:jcm9072240. [PMID: 32679682 PMCID: PMC7408743 DOI: 10.3390/jcm9072240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease mainly provoked by pre- and postnatal infections, mechanical ventilation, and oxygen toxicity. In severely affected premature infants requiring mechanical ventilation, association of bacterial colonization of the lung and BPD was recently disclosed. To analyze the impact of bacterial colonization of the upper airway and gastrointestinal tract on moderate/severe BPD, we retrospectively analyzed nasopharyngeal and anal swabs taken weekly during the first 6 weeks of life at a single center in n = 102 preterm infants <1000 g. Colonization mostly occurred between weeks 2 and 6 and displayed a high diversity requiring categorization. Analyses of deviance considering all relevant confounders revealed statistical significance solely for upper airway colonization with bacteria with pathogenic potential and moderate/severe BPD (p = 0.0043) while no link could be established to the Gram response or the gastrointestinal tract. Our data highlight that specific colonization of the upper airway poses a risk to the immature lung. These data are not surprising taking into account the tremendous impact of microbial axes on health and disease across ages. We suggest that studies on upper airway colonization using predefined categories represent a feasible approach to investigate the impact on the pulmonary outcome in ventilated and non-ventilated preterm infants.
Collapse
|
10
|
Gilfillan M, Das P, Shah D, Alam MA, Bhandari V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res 2020; 21:92. [PMID: 32321512 PMCID: PMC7178994 DOI: 10.1186/s12931-020-01353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. Methods Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. Results Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. Conclusion We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Mohammad Afaque Alam
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Temple University, Philadelphia, PA, 19140, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA. .,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA. .,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA. .,Temple University, Philadelphia, PA, 19140, USA. .,Pediatrics, Obstetrics and Gynecology and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. .,Neonatology, The Children's Regional Hospital at Cooper, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
11
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|