1
|
Sharafi SM, Ebrahimiadib N, Roohipourmoallai R, Dastjani Farahani A, Imani Fooladi M, Gharehbaghi G, Khalili Pour E. SmartPlus: a computer-based image analysis method to predict continuous-valued vascular abnormality index in Retinopathy of Prematurity. Int J Retina Vitreous 2025; 11:43. [PMID: 40217482 PMCID: PMC11987276 DOI: 10.1186/s40942-025-00668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Plus disease is characterized by abnormal changes in retinal vasculature of premature infants. Presence of Plus disease is an important criterion for identifying treatment-requiring cases in Retinopathy of Prematurity (ROP). However, diagnosis of Plus disease has been shown to be subjective and there is wide variability in the classification of Plus disease by ROP experts, which is mainly because experts have different cut-points for distinguishing the levels of vascular abnormality. This suggests that a continuous Plus disease severity score may reflect more accurately the behavior of expert clinicians and may better standardize the classification. The effect of using quantitative methods and computer-based image analysis to improve the objectivity of Plus disease diagnosis have been well established. Nevertheless, the current methods are based on categorical classifications of the disease severity and lack the compatibility with the continuous nature of the abnormal changes in retinal vasculatures. In this study, we developed a computer-based method that performs a quantitative analysis of vascular characteristics associated with Plus disease and utilizes them to build a regression model that outputs a continuous spectrum of Plus severity. We evaluated the proposed method against the consensus diagnosis made by four ROP experts on 76 posterior ROP images. The findings of our study indicate that our approach demonstrated a relatively acceptable level of accuracy in evaluating the severity of Plus disease, which is comparable to the diagnostic abilities of experts.
Collapse
Affiliation(s)
- Sayed Mehran Sharafi
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Ebrahimiadib
- Ophthalmology Department, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramak Roohipourmoallai
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tempa, FL, USA
| | - Afsar Dastjani Farahani
- Retinopathy of Prematurity Department, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Marjan Imani Fooladi
- Clinical Pediatric Ophthalmology Department, UPMC, Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Golnaz Gharehbaghi
- Department of Pediatrics, Ali Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elias Khalili Pour
- Retinopathy of Prematurity Department, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran.
| |
Collapse
|
2
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Sharafi SM, Ebrahimiadib N, Roohipourmoallai R, Farahani AD, Fooladi MI, Khalili Pour E. Automated diagnosis of plus disease in retinopathy of prematurity using quantification of vessels characteristics. Sci Rep 2024; 14:6375. [PMID: 38493272 PMCID: PMC10944526 DOI: 10.1038/s41598-024-57072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
The condition known as Plus disease is distinguished by atypical alterations in the retinal vasculature of neonates born prematurely. It has been demonstrated that the diagnosis of Plus disease is subjective and qualitative in nature. The utilization of quantitative methods and computer-based image analysis to enhance the objectivity of Plus disease diagnosis has been extensively established in the literature. This study presents the development of a computer-based image analysis method aimed at automatically distinguishing Plus images from non-Plus images. The proposed methodology conducts a quantitative analysis of the vascular characteristics linked to Plus disease, thereby aiding physicians in making informed judgments. A collection of 76 posterior retinal images from a diverse group of infants who underwent screening for Retinopathy of Prematurity (ROP) was obtained. A reference standard diagnosis was established as the majority of the labeling performed by three experts in ROP during two separate sessions. The process of segmenting retinal vessels was carried out using a semi-automatic methodology. Computer algorithms were developed to compute the tortuosity, dilation, and density of vessels in various retinal regions as potential discriminative characteristics. A classifier was provided with a set of selected features in order to distinguish between Plus images and non-Plus images. This study included 76 infants (49 [64.5%] boys) with mean birth weight of 1305 ± 427 g and mean gestational age of 29.3 ± 3 weeks. The average level of agreement among experts for the diagnosis of plus disease was found to be 79% with a standard deviation of 5.3%. In terms of intra-expert agreement, the average was 85% with a standard deviation of 3%. Furthermore, the average tortuosity of the five most tortuous vessels was significantly higher in Plus images compared to non-Plus images (p ≤ 0.0001). The curvature values based on points were found to be significantly higher in Plus images compared to non-Plus images (p ≤ 0.0001). The maximum diameter of vessels within a region extending 5-disc diameters away from the border of the optic disc (referred to as 5DD) exhibited a statistically significant increase in Plus images compared to non-Plus images (p ≤ 0.0001). The density of vessels in Plus images was found to be significantly higher compared to non-Plus images (p ≤ 0.0001). The classifier's accuracy in distinguishing between Plus and non-Plus images, as determined through tenfold cross-validation, was found to be 0.86 ± 0.01. This accuracy was observed to be higher than the diagnostic accuracy of one out of three experts when compared to the reference standard. The implemented algorithm in the current study demonstrated a commendable level of accuracy in detecting Plus disease in cases of retinopathy of prematurity, exhibiting comparable performance to that of expert diagnoses. By engaging in an objective analysis of the characteristics of vessels, there exists the possibility of conducting a quantitative assessment of the disease progression's features. The utilization of this automated system has the potential to enhance physicians' ability to diagnose Plus disease, thereby offering valuable contributions to the management of ROP through the integration of traditional ophthalmoscopy and image-based telemedicine methodologies.
Collapse
Affiliation(s)
- Sayed Mehran Sharafi
- Retinopathy of Prematurity Department, Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Nazanin Ebrahimiadib
- Ophthalmology Department, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramak Roohipourmoallai
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tempa, FL, USA
| | - Afsar Dastjani Farahani
- Retinopathy of Prematurity Department, Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran
| | - Marjan Imani Fooladi
- Clinical Pediatric Ophthalmology Department, UPMC, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Elias Khalili Pour
- Retinopathy of Prematurity Department, Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran.
| |
Collapse
|
4
|
Ichiyama Y, Matsumoto R, Obata S, Sawada O, Saishin Y, Kakinoki M, Sawada T, Ohji M. Assessment of mouse VEGF neutralization by ranibizumab and aflibercept. PLoS One 2022; 17:e0278951. [PMID: 36542626 PMCID: PMC9770341 DOI: 10.1371/journal.pone.0278951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the interaction between ranibizumab, aflibercept, and mouse vascular endothelial growth factor (VEGF), both in vivo and in vitro. METHODS In vivo, the effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced retinopathy (OIR) and the effect of multiple intraperitoneal injections of ranibizumab and aflibercept on neonatal mice were assessed. In vitro, the interaction of mouse VEGF-A with aflibercept or ranibizumab as the primary antibody was analyzed by Western blot. RESULTS In both experiments using intravitreal injections in OIR mice and multiple intraperitoneal injections in neonatal mice, anti-VEGF effects were observed with aflibercept, but not with ranibizumab. Western blot analysis showed immunoreactive bands for mouse VEGF-A in the aflibercept-probed blot, but not in the ranibizumab-probed blot. CONCLUSIONS Aflibercept but not ranibizumab interacts with mouse VEGF, both in vivo and in vitro. When conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but ranibizumab is not.
Collapse
Affiliation(s)
- Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
- * E-mail:
| | - Riko Matsumoto
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Shumpei Obata
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Osamu Sawada
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Yoshitsugu Saishin
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Masashi Kakinoki
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Tomoko Sawada
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, Japan
| |
Collapse
|
5
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|