1
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Investigation on the Inhibitory Effect of Methotrexate on Rheumatoid Synovitis via the TLR4-NF- κB Pathway in a Rat Model. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3495966. [PMID: 36277597 PMCID: PMC9568366 DOI: 10.1155/2022/3495966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
Rheumatoid arthritis (RA) is a rheumatoid immune system disease characterized by joint inflammation, resulting in synovial hyperplasia, articular cartilage damage or distortion, and extra-articular involvement. The morbidity is higher and the treatments are not effective in clinical, and also no unified to the pathogenesis of such diseases. The aim of this paper is to establish a rat model of rheumatoid synovitis and observe the inhibitory effect of methotrexate on this disease. A total of 100 SD rats are selected and randomly divided into 5 groups, with 20 rats in each group. The cold and damp factors of rheumatoid arthritis are induced by cold water and the arthritis score is used to verify the model. ELISA is used to measure the protein expression of Toll-like Receptor 4 (TLR4), Nuclear Factor kappa-B (NF-κB) and inflammation-related factors, and SPSS25.0 is used for statistical analysis. The results show that there is no significant difference in inflammatory scores among the four groups except the control group. However, after 3 months of intervention, the inflammatory scores in the methotrexate groups are significantly lower than those in the model group, and in the methotrexate group, the higher the dose, the lower the inflammatory scores. The experimental results show that the messenger ribonucleic acid (mRNA) and protein expressions of TLR4 and NF-κB from high to low are in the order of model group > low dose > middle dose > high dose > control group, and the expression trend of inflammation-related factors is the same as mentioned above. These results indicate that methotrexate can repair rheumatoid synovitis by inhibiting the inflammatory signaling pathway TLR4-NF-κB.
Collapse
|
3
|
Sakalyte R, Denkovskij J, Bernotiene E, Stropuviene S, Mikulenaite SO, Kvederas G, Porvaneckas N, Tutkus V, Venalis A, Butrimiene I. The Expression of Inflammasomes NLRP1 and NLRP3, Toll-Like Receptors, and Vitamin D Receptor in Synovial Fibroblasts From Patients With Different Types of Knee Arthritis. Front Immunol 2022; 12:767512. [PMID: 35126351 PMCID: PMC8807559 DOI: 10.3389/fimmu.2021.767512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Activated rheumatoid arthritis (RA) synovial fibroblasts (SFs) are among the most important cells promoting RA pathogenesis. They are considered active contributors to the initiation, progression, and perpetuation of the disease; therefore, early detection of RASF activation could advance contemporary diagnosis and adequate treatment of undifferentiated early inflammatory arthritis (EA). In this study, we investigated the expression of nucleotide-binding, oligomerization domain (NOD)-like receptor family, pyrin domain containing (NLRP)1, NLRP3 inflammasomes, Toll-like receptor (TLR)1, TLR2, TLR4, vitamin D receptor (VDR), and secretion of matrix metalloproteinases (MMPs) in SFs isolated from patients with RA, osteoarthritis (OA), EA, and control individuals (CN) after knee surgical intervention. C-reactive protein, general blood test, anticyclic citrullinated peptide (anti-CCP), rheumatoid factor (RF), and vitamin D (vitD) in patients’ sera were performed. Cells were stimulated or not with 100 ng/ml tumor necrosis factor alpha (TNF-α) or/and 1 nM or/and 0.01 nM vitamin D3 for 72 h. The expression levels of NLRP1, NLRP3, TLR1, TLR2, TLR4, and VDR in all examined SFs were analyzed by quantitative real-time PCR (RT-qPCR). Additionally, the secretion of IL-1β by SFs and MMPs were determined by ELISA and Luminex technology. The expression of NLRP3 was correlated with the levels of CRP, RF, and anti-CCP, suggesting its implication in SF inflammatory activation. In the TNF-α-stimulated SFs, a significantly lower expression of NLRP3 and TLR4 was observed in the RA group, compared with the other tested forms of arthritis. Moreover, upregulation of NLRP3 expression by TNF-α alone or in combination with vitD3 was observed, further indicating involvement of NLRP3 in the inflammatory responses of SFs. Secretion of IL-1β was not detected in any sample, while TNF-α upregulated the levels of secreted MMP-1, MMP-7, MMP-8, MMP-12, and MMP-13 in all patient groups. Attenuating effects of vitD on the expression of NLRP3, TLR1, and TLR4 suggest potential protective effects of vitD on the inflammatory responses in SFs. However, longer studies may be needed to confirm or fully rule out the potential implication of vitD in SF activation in inflammatory arthritis. Both VDR and NLRP3 in the TNF-α-stimulated SFs negatively correlated with the age of patients, suggesting potential age-related changes in the local inflammatory responses.
Collapse
Affiliation(s)
- Regina Sakalyte
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
- *Correspondence: Regina Sakalyte,
| | - Jaroslav Denkovskij
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, The Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius Tech, Vilnius, Lithuania
| | - Sigita Stropuviene
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| | - Silvija Ona Mikulenaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, Vilnius, Lithuania
| | - Giedrius Kvederas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
| | - Narunas Porvaneckas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
| | - Vytautas Tutkus
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Venalis
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| | - Irena Butrimiene
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Department of Experimental, Preventative and Clinic Medicine, Vilnius, Lithuania
| |
Collapse
|
4
|
Bioflavonoid Robinin from Astragalus falcatus Lam. Mildly Improves the Effect of Metothrexate in Rats with Adjuvant Arthritis. Nutrients 2021; 13:nu13041268. [PMID: 33924354 PMCID: PMC8069410 DOI: 10.3390/nu13041268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022] Open
Abstract
Anti-inflammatory potential of orally administrated bioflavonoid-robinin, active sub-stance of original drug Flaroninum™ (FL), was investigated in the combination with methotrexate (MTX) and in monotherapy in rats suffering from adjuvant-induced arthritis (AA). Robinin (kaempferol-3-O-robinoside-7-O-rhamnoside) was isolated from the aerial parts of Astragalus falcatus Lam. The monotherapy with robinin was not efficient in alleviating symptoms of AA. The combination of MTX with robinin was similarly active as MTX alone in reducing the hind paw volume and change of body weight during the whole experiment. The combination, however, reduced plasma levels of Interleukin-17Aand activity of gamma-glutamyl transferase in joint more efficiently then MTX alone. Our results demonstrate that the novel combination of robinin and MTX mildly improved the reduction of inflammation in experimental arthritis.
Collapse
|