1
|
Xu L, Li W, Chen Y, Liu S, Liu G, Luo W, Cao G, Wang S. Metformin Regulates Cardiac Ferroptosis to Reduce Metabolic Syndrome-Induced Cardiac Dysfunction. Appl Biochem Biotechnol 2025; 197:179-193. [PMID: 39106027 DOI: 10.1007/s12010-024-05038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
High-fat diet-induced metabolic syndrome (MetS) is closely associated with cardiac dysfunction. Recent research studies have indicated a potential association between MetS and ferroptosis. Furthermore, metformin can alleviate MetS-induced cardiac ferroptosis. Metformin is a classic biguanide anti-diabetic drug that has protective effects on cardiovascular diseases, which extend beyond its indirect glycemic control. This study aimed to assess whether MetS mediates cardiac ferroptosis, thereby causing oxidative stress and mitochondrial dysfunction. The results revealed that metformin can mitigate cardiac reactive oxygen species and mitochondrial damage, thereby preserving cardiac function. Mechanistic analysis revealed that metformin upregulates the expression of cardiac Nrf2. Moreover, Nrf2 downregulation compromises the cardio-protective effects of metformin. In summary, this study indicated that MetS promotes cardiac ferroptosis, and metformin plays a preventive and therapeutic role, partially through modulation of Nrf2 expression.
Collapse
Affiliation(s)
- Liancheng Xu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
- Fujian Medical University, Fuzhou, 350108, China
| | - Wenwen Li
- Department of Nephrology, Suqian First Hospital, Suqian, 223800, China
| | - Yu Chen
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shan Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guodong Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Weihuan Luo
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guanyi Cao
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shiping Wang
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China.
| |
Collapse
|
2
|
Turkistani A, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Al‐Windy S, Batiha GE. Pharmacological characterization of the antidiabetic drug metformin in atherosclerosis inhibition: A comprehensive insight. Immun Inflamm Dis 2024; 12:e1346. [PMID: 39092773 PMCID: PMC11295104 DOI: 10.1002/iid3.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a progressive disease that interferes with blood flow, leading to cardiovascular complications such as hypertension, ischemic heart disease, ischemic stroke, and vascular ischemia. The progression of AS is correlated with inflammation, oxidative stress, and endothelial dysfunction. Various signaling pathways, like nuclear erythroid-related factor 2 (Nrf2) and Kruppel-like factor 2 (KLF2), are involved in the pathogenesis of AS. Nrf2 and KLF2 have anti-inflammatory and antioxidant properties. Thus, activation of these pathways may reduce the development of AS. Metformin, an insulin-sensitizing drug used in the management of type 2 diabetes mellitus (T2DM), increases the expression of Nrf2 and KLF2. AS is a common long-term macrovascular complication of T2DM. Thus, metformin, through its pleiotropic anti-inflammatory effect, may attenuate the development and progression of AS. AIMS Therefore, this review aims to investigate the possible role of metformin in AS concerning its effect on Nrf2 and KLF2 and inhibition of reactive oxygen species (ROS) formation. In addition to its antidiabetic effect, metformin can reduce cardiovascular morbidities and mortalities compared to other antidiabetic agents, even with similar blood glucose control by the Nrf2/KLF2 pathway activation. CONCLUSION In conclusion, metformin is an effective therapeutic strategy against the development and progression of AS, mainly through activation of the KLF2/Nrf2 axis.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of MedicineTaif UniversityTaifSaudi Arabia
| | - Haydar M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
- Department of Clinical Pharmacology and MedicineJabir ibn Hayyan Medical UniversityKufaIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityPunjabIndia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Salah Al‐Windy
- Department of Biology, College of ScienceBaghdad UniversityBaghdadIraq
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
3
|
Debashish Biswal, Songbiao Li. Transcription Factors in Cardiac Remodeling: Latest Advances. CYTOL GENET+ 2024; 58:234-245. [DOI: 10.3103/s0095452724030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025]
|
4
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
5
|
Phadwal K, Tan X, Koo E, Zhu D, MacRae VE. Metformin ameliorates valve interstitial cell calcification by promoting autophagic flux. Sci Rep 2023; 13:21435. [PMID: 38052777 PMCID: PMC10698150 DOI: 10.1038/s41598-023-47774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart disease of the developed world. It has previously been established that metformin administration reduces arterial calcification via autophagy; however, whether metformin directly regulates CAVD has yet to be elucidated. In the present study we investigated whether metformin alleviates valvular calcification through the autophagy-mediated recycling of Runx2. Calcification was reduced in rat valve interstitial cells (RVICs) by metformin treatment (0.5-1.5 mM) (P < 0.01), with a marked decrease in Runx2 protein expression compared to control cells (P < 0.05). Additionally, upregulated expression of Atg3 and Atg7 (key proteins required for autophagosome formation), was observed following metformin treatment (1 mM). Blocking autophagic flux using Bafilomycin-A1 revealed colocalisation of Runx2 with LC3 puncta in metformin treated RVICs (P < 0.001). Comparable Runx2 accumulation was seen in LC3 positive autolysosomes present within cells that had been treated with both metformin and hydroxychloroquine in combination (P < 0.001). Mechanistic studies employing three-way co-immunoprecipitation with Runx2, p62 and LC3 suggested that Runx2 binds to LC3-II upon metformin treatment in VICs. Together these studies suggest that the utilisation of metformin may represent a novel strategy for the treatment of CAVD.
Collapse
Affiliation(s)
- K Phadwal
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - X Tan
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Guangzhou Institute of Cardiovascular Diseases, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - E Koo
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - D Zhu
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - V E MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
6
|
BinMowyna MN. Zingerone attenuates intestinal injury and colitis caused by a high-fat diet through Nrf2 signaling regulation. Saudi J Biol Sci 2023; 30:103775. [PMID: 37766888 PMCID: PMC10519856 DOI: 10.1016/j.sjbs.2023.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the protective effect of Zingerone against a high-fat diet (HFD)-induced intestinal damage. Control and HFD rats were treated with the vehicle or Zingerone (100 mg/kg, orally) (n = 8 rats/groups). An extra group, HFD + Zingerone + brusatol (an Nrf2 inhibitor). This study treatment lasted four weeks. Zingerone reduced the nuclear levels of NF-B p65 in control and HFD-fed rats while increasing SOD, CAT, GSH, levels of mRNA, cytoplasmic levels, and Nrf2 nuclear levels. Zingerone treatment attenuated the duodenal epithelial damage and maintained the mucosal barrier by reducing plasma FITC-DX and serum LPS in rats fed with HFD. Concomitantly, it lowered the duodenal MDA, TNF-α, IL-6, and IL-1β levels. These impacts included changes in body weight, duodenal lipid levels, and Keap-1 expression, a natural Nrf2 inhibitor. We concluded that Zingerone reduces HFD-induced duodenal injury. These findings support Zingerone's clinical applicability against various inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Mona N. BinMowyna
- College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| |
Collapse
|
7
|
El-Beheiry KM, El-Sayed El-Sayad M, El-Masry TA, Elsisi AE. Combination of metformin and hesperidin mitigates cyclophosphamide-induced hepatotoxicity. Emerging role of PPAR-γ/Nrf-2/NF-κB signaling pathway. Int Immunopharmacol 2023; 117:109891. [PMID: 36812672 DOI: 10.1016/j.intimp.2023.109891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cyclophosphamide (CP) is widely used as an immunosuppressive and chemotherapeutic drug. However, its therapeutic application is restricted by its adverse effects, particularly hepatotoxicity. Both metformin (MET) and hesperidin (HES) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, the principal aim of the current study is to investigate the hepatoprotective effects of MET, HES, and their combinations on the CP-induced hepatotoxicity model. Hepatotoxicity was evoked by a single (I.P) injection of CP (200 mg/kg) on day 7. For this study, 64 albino rats were randomly categorized into eight equal groups; naïve, control vehicle, untreated CP (200 mg/kg, IP), and CP 200 groups treated with MET 200, HES 50, HES 100 or a combination of MET 200 with HES 50 and HES 100 respectively orally daily for 12 days. At the end of the study, the liver function biomarkers, oxidative stress, inflammatory parameters, histopathological and immunohistochemical analysis of PPAR-γ, Nrf-2, NF-κB, Bcl-2, and caspase3 were assessed. CP significantly increased serum ALT, AST, total bilirubin, hepatic MDA, NO content, NF-κB, and TNF-α. Otherwise, albumin, hepatic GSH content, Nrf-2, and PPAR-γ expression decreased considerably compared to the control vehicle group. The combinations of MET200 with HES50 or HES100 induced pronounced hepatoprotective, anti-oxidative, anti-inflammatory, and anti-apoptotic effects on CP-treated rats. The possible explanation of such hepatoprotective effects may be mediated via upregulation of Nrf-2, PPAR-γ, Bcl-2 expression, hepatic GSH content, and marked suppression of TNF-α and NF-κB expression. In conclusion, the current study showed that combining MET and HES revealed a remarkable hepatoprotective effect against CP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kareman M El-Beheiry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Magda El-Sayed El-Sayad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Isoliquiritigenin attenuates high-fat diet-induced intestinal damage by suppressing inflammation and oxidative stress and through activating Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
10
|
Hurley DJ, Irnaten M, O’Brien C. Metformin and Glaucoma-Review of Anti-Fibrotic Processes and Bioenergetics. Cells 2021; 10:cells10082131. [PMID: 34440899 PMCID: PMC8394782 DOI: 10.3390/cells10082131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. With an aging population, disease incidence will rise with an enormous societal and economic burden. The treatment strategy revolves around targeting intraocular pressure, the principle modifiable risk factor, to slow progression of disease. However, there is a clear unmet clinical need to find a novel therapeutic approach that targets and halts the retinal ganglion cell (RGC) degeneration that occurs with fibrosis. RGCs are highly sensitive to metabolic fluctuations as a result of multiple stressors and thus their viability depends on healthy mitochondrial functioning. Metformin, known for its use in type 2 diabetes, has come to the forefront of medical research in multiple organ systems. Its use was recently associated with a 25% reduced risk of glaucoma in a large population study. Here, we discuss its application to glaucoma therapy, highlighting its effect on fibrotic signalling pathways, mitochondrial bioenergetics and NAD oxidation.
Collapse
Affiliation(s)
- Daire J. Hurley
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Babusha Wega A, Kelta Wabalo E, Kenenisa Edae C, Bogale Awgichew G. Cardiac Troponin-I Status of Type-2 Diabetic Patients on Anti-Diabetic Drugs Treatment at Jimma Medical Center, Jimma, Southwest Ethiopia. RESEARCH REPORTS IN CLINICAL CARDIOLOGY 2021. [DOI: 10.2147/rrcc.s313432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|