1
|
Fan X, Wu L, Cheng T, Lv W, Tian J, Tao J, Tu S, Tan F, Wang Y. Oroxylin A may promote cell apoptosis and inhibit epithelial-mesenchymal transition in endometrial cancer, associated with the ERβ/PI3K/AKT pathway. Sci Rep 2025; 15:12225. [PMID: 40211010 PMCID: PMC11986019 DOI: 10.1038/s41598-025-97122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Endometrial cancer (EC) is a prevalent gynecological cancer worldwide, often associated with poor prognosis after recurrence or metastasis. Oroxylin A (OA) is an active flavonoid compound with a strong anti-tumor function. However, the effects of OA on EC remain unknown. In this study, we planned to investigate the anti-EC effects of OA and explore its mechanisms. Five cell lines were used for in vitro experiments, and female BALB/c nude mice were applied for xenograft experiments. The cytotoxicity and experimental concentration of OA were detected by CCK-8. Wound healing, transwell, and colony formation assays were used to evaluate the anti-metastatic and anti-proliferative activities of OA on EC cells. TUNEL assay and flow cytometry were applied for the evaluation of apoptosis. Network pharmacology was used to explore potential targets, and molecular dynamics simulations and dockings were applied for the quantification of binding energy, and stability of OA. RT-qPCR, WB, and immunofluorescence were applied for the detection of localization and expression of correlated markers. The results showed that OA notably inhibited the proliferation, migration, and invasion of Ishikawa cells. Meanwhile, in vivo Ishikawa xenograft assays demonstrated that OA notably inhibited growth and promoted apoptosis of EC. Mechanistically, after treatment with OA, the expressions of Cleaved Caspase-3, BAX, E-cadherin, and ERβ were increased, while the expressions of Bcl-2, Vimentin, N-cadherin, MMP2, MMP9, PI3K and phospho-AKT (Ser473) were decreased. Therefore, OA may exhibit significant anti-EC effects by regulating the ERβ/PI3K/AKT pathway to promote apoptosis and inhibit epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Xue Fan
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application and Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University and The First School of Clinical Medicine, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Luming Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tong Cheng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weilong Lv
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application and Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University and The First School of Clinical Medicine, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Jiao Tian
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jijun Tao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shiyan Tu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application and Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University and The First School of Clinical Medicine, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Fangjun Tan
- Gansu Province Third People's Hospital, Lanzhou, 730000, China
| | - Yiqing Wang
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application and Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University and The First School of Clinical Medicine, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Xu S, Ma Z, Xing L, Cheng W. Polygonatum sibiricum component liquiritigenin restrains breast cancer cell invasion and migration by inhibiting HSP90 and chaperone-mediated autophagy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:379-387. [PMID: 38926844 PMCID: PMC11211752 DOI: 10.4196/kjpp.2024.28.4.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) is most commonly diagnosed worldwide. Liquiritigenin is a flavonoid found in various species of the Glycyrrhiza genus, showing anti-tumor activity. This article was to explore the influences of liquiritigenin on the biological behaviors of BC cells and its underlying mechanism. BC cells were treated with liquiritigenin alone or transfected with oe-HSP90 before liquiritigenin treatment. RT-qPCR and Western blotting were employed to examine the levels of HSP90, Snail, E-cadherin, HSC70, and LAMP-2A. Cell viability, proliferation, migration, and invasion were evaluated by performing MTT, colony formation, scratch, and Transwell assays, respectively. Liquiritigenin treatment reduced HSP90 and Snail levels and enhanced E-cadherin expression as well as inhibiting the proliferation, migration, and invasion of BC cells. Moreover, liquiritigenin treatment decreased the expression of HSC70 and LAMP-2A, proteins related to chaperone-mediated autophagy (CMA). HSP90 overexpression promoted the CMA, invasion, and migration of BC cells under liquiritigenin treatment. Liquiritigenin inhibits HSP90-mediated CMA, thereby suppressing BC cell growth.
Collapse
Affiliation(s)
- Suli Xu
- Department of Medicine, Huangshan Vocational Technical College, Huangshan, Anhui 245000, China
| | - Zhao Ma
- Department of Medicine, Huangshan Vocational Technical College, Huangshan, Anhui 245000, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Weiqing Cheng
- Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou, Fujian 350007, China
| |
Collapse
|
3
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
6
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
7
|
Montal E, Lumaquin D, Ma Y, Suresh S, White RM. Modeling the effects of genetic- and diet-induced obesity on melanoma progression in zebrafish. Dis Model Mech 2023; 16:285858. [PMID: 36472402 PMCID: PMC9884122 DOI: 10.1242/dmm.049671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.
Collapse
Affiliation(s)
- Emily Montal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dianne Lumaquin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Yilun Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Shruthy Suresh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M. White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Author for correspondence ()
| |
Collapse
|
8
|
Hargrove-Wiley E, Fingleton B. Sex Hormones in Breast Cancer Immunity. Cancer Res 2023; 83:12-19. [PMID: 36279153 DOI: 10.1158/0008-5472.can-22-1829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Sex hormones, such as estrogens and androgens, regulate genomic and cellular processes that contribute to sex-specific disparities in the pathophysiology of various cancers. Sex hormones can modulate the immune signals and activities of tumor cells and tumor-associated leukocytes to support or suppress cancer progression. Therefore, hormonal differences between males and females play a crucial role in cancer immunity and in the response to therapies that exploit the intrinsic immune system to eliminate malignant cells. In this review, we summarize the impact of sex hormones in the breast cancer microenvironment, with a focus on how the hormonal environment affects tumor immunity. We also discuss the potential benefits of endocrine therapy used in combination with immunotherapy to strengthen the antitumor immune response.
Collapse
Affiliation(s)
- Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
Urbano T, Vinceti M, Wise LA, Filippini T. Light at night and risk of breast cancer: a systematic review and dose-response meta-analysis. Int J Health Geogr 2021; 20:44. [PMID: 34656111 PMCID: PMC8520294 DOI: 10.1186/s12942-021-00297-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common malignancy in women and the second leading cause of cancer death overall. Besides genetic, reproductive, and hormonal factors involved in disease onset and progression, greater attention has focused recently on the etiologic role of environmental factors, including exposure to artificial lighting such as light-at-night (LAN). We investigated the extent to which LAN, including outdoor and indoor exposure, affects breast cancer risk. We performed a systematic review of epidemiological evidence on the association between LAN exposure and breast cancer risk, using a dose–response meta-analysis to examine the shape of the relation. We retrieved 17 eligible studies through September 13, 2021, including ten cohort and seven case–control studies. In the analysis comparing highest versus lowest LAN exposure, we found a positive association between exposure and disease risk (risk ratio [RR] 1.11, 95% confidence interval-CI 1.07–1.15), with comparable associations in case–control studies (RR 1.14, 95% CI 0.98–1.34) and cohort studies (RR 1.10, 95% CI 1.06–1.15). In stratified analyses, risk was similar for outdoor and indoor LAN exposure, while slightly stronger risks were observed for premenopausal women (premenopausal: RR 1.16, 95% CI 1.04–1.28; postmenopausal: 1.07, 95% CI 1.02–1.13) and for women with estrogen receptor (ER) positive breast cancer (ER + : RR 1.09, 95% CI 1.02–1.17; ER–: RR 1.07, 95% CI 0.92–1.23). The dose–response meta-analysis, performed only in studies investigating outdoor LAN using comparable exposure assessment, showed a linear relation up to 40 nW/cm2/sr after which the curve flattened, especially among premenopausal women. This first assessment of the dose–response relation between LAN and breast cancer supports a positive association in selected subgroups, particularly in premenopausal women.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Mirzaei S, Abadi AJ, Gholami MH, Hashemi F, Zabolian A, Hushmandi K, Zarrabi A, Entezari M, Aref AR, Khan H, Ashrafizadeh M, Samarghandian S. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur J Pharmacol 2021; 908:174344. [PMID: 34270987 DOI: 10.1016/j.ejphar.2021.174344] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
Considering the fact that cancer cells can switch among various molecular pathways and mechanisms to ensure their progression, chemotherapy is no longer effective enough in cancer therapy. As an anti-tumor agent, doxorubicin (DOX) is derived from Streptomyces peucetius and can induce cytotoxicity by binding to topoisomerase enzymes to suppress DNA replication, leading to apoptosis and cell cycle arrest. However, efficacy of DOX in suppressing cancer progression is restricted by development of drug resistance. Cancer cells elevate their metastasis in triggering DOX resistance. The epithelial-to-mesenchymal transition (EMT) mechanism participates in transforming epithelial cells into mesenchymal cells that have fibroblast-like features. The EMT diminishes intercellular adhesion and enhances migration of cells that are necessary for carcinogenesis. Various oncogenic molecular pathways stimulate EMT in cancer. EMT can induce DOX resistance, and in this way, upstream mediators such as ZEB proteins, microRNAs, Twist1 and TGF-β play a significant role. Identification of molecular pathways involved in EMT regulation and DOX resistance has resulted in using gene therapy such as microRNA transfection and siRNA in overcoming chemoresistance. Furthermore, curcumin and formononetin, owing to their cytotoxicity against cancer cells, can suppress EMT in mediating DOX sensitivity. For promoting efficacy in DOX sensitivity, nanoparticles have been developed for boosting ability in EMT inhibition.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Abstract
Despite the improvements in diagnostic and therapeutic approaches, breast cancer still remains one of the world’s leading causes of death among women. Particularly, triple negative breast cancer (TNBC) is characterized by aggressiveness, metastatic spreading, drug resistance and a very high percentage of death in patients. Nowadays, identification of new targets in TNBC appears very compelling. TNBC are considered negative for the estrogen receptor alpha (ERα) expression. Nevertheless, they often express ERβ and its variants. As such, this TNBC subtype still responds to estrogens. While the ERβ1 variant seems to act as a tumor-suppressor, the two variants ERβ2 and 5 exhibit pro-oncogenic activities in TNBC. Thus, ERβ1 activation might be used to limit the growth and spreading as well as to increase the drug sensitivity of TNBC. In contrast, the pro-oncogenic properties of ERβ2 and ERβ5 suggest the possible development and clinical use of specific antagonists in TNBC treatment. Furthermore, the role of ERβ might be regarded in the context of the androgen receptor (AR) expression, which represents another key marker in TNBC. The relationship between AR and ERβ as well as the ability to modulate the receptor-mediated effects through agonists/antagonists represent a challenge to develop more appropriate therapies in clinical management of TNBC patients. In this review, we will discuss the most recent data in the field. Therapeutic implications of these findings are also presented in the light of the discovery of specific ERβ modulators.
Collapse
|
12
|
Zhang S, Cui T, Duan Y, Zhang H, Wang B, Chen H, Ni J, Shen Y, Xiao-Ai Lv. Radix Tetrastigma Extracts Enhance the Chemosensitivity in Triple-Negative Breast Cancer Via Inhibiting PI3K/Akt/mTOR-Mediated Autophagy. Clin Breast Cancer 2021; 22:89-97. [PMID: 34535390 DOI: 10.1016/j.clbc.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Drug resistance in tumors is one of the major factors that leads to chemotherapy failure. This study aims to investigate the effect of Radix Tetrastigma extracts (RTEs) on Taxol-induced autophagy and the chemosensitivity against drug resistance in triple-negative breast cancer (TNBC). METHODS Taxol-resistant MDA-MB-468 (MDA-MB-468/Taxol) cells were induced and treated with RTEs and/or Taxol. Mice were subcutaneously inoculated with MDA-MB- 468/Taxol cells to establish xenograft models. The associated protein levels were measured by western blotting. Flow cytometry, CCK-8 and EdU assay were performed to detect cell apoptosis, viability, and proliferation, respectively. RESULTS In MDA-MB-468/Taxol cells, RTEs & Taxol treatment increased cell apoptosis, reduced cell viability and proliferation, up-regulated anti-autophagy marker LC3I/LC3II ratio, and enhanced mTOR level. With RTEs & Taxol treatment, mTOR silencing downregulated LC3I/LC3II ratio, increased cell viability and proliferation, and reduced cell apoptosis, while mTOR overexpression showed the opposite results. PI3K inhibitor reduced AKT and mTOR levels, and the effects on cell activities were similar to the results of mTOR silencing. After RTEs & Taxol injection, xenograft tumor was smaller, and AKT, mTOR, LC3I/LC3II ratio and apoptotic marker cleaved caspase-3 were increased. CONCLUSION RTEs enhanced the chemosensitivity of resistant TNBC cells to Taxol through inhibiting PI3K/Akt/mTOR-mediated autophagy. MICRO RTEs exerted anti-tumor effects in various cancers, and this study determined its role in TNBC. Taxol-resistant MDA-MB-468 cells were induced and xenograft models were established. We found that RTEs inhibited autophagy of MDA-MB-468/Taxol cells and reduced tumor growth. Inhibition of PI3K/Akt/mTOR pathway promoted autophagy of MDA-MB-468/Taxol cells. We may provide a new potential strategy for TNBC treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tongxing Cui
- General Surgery department, the affiliated Qingdao Municipal Hospital of Qingdao university, Qingdao 266000, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hongchen Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Bei Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Huiling Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junjie Ni
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yilin Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Ai Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Fan S, Yan S, Yang Y, Shang J, Hao M. Actin-Like Protein 8 Promotes the Progression of Triple-Negative Breast Cancer via Activating PI3K/AKT/mTOR Pathway. Onco Targets Ther 2021; 14:2463-2473. [PMID: 33883901 PMCID: PMC8053609 DOI: 10.2147/ott.s291403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective The purpose of this study was to investigate the function of actin-like protein 8 (ACTL8) on triple-negative breast cancer (TNBC) and its potential mechanisms. Methods In our study, ACTL8 expression and the prognostic values of ACTL8 were evaluated via the dataset from the Cancer Genome Atlas (TCGA). At the same time, the expression of ACTL8 in TNBC cells was measured by Western blot and qRT-PCR. Then, the effects of ACTL8 on the growth and metastasis of TNBC were investigated by using 5-ethynyl-20-deoxyuridine (EdU), colony formation, flow cytometry, wound healing and transwell assays. Mechanistically, Western blot was performed to confirm the interaction between ACTL8 and phosphatidylinositol 3′-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in TNBC. Results ACTL8 expression was upregulated in TNBC and associated with the poor prognosis of TNBC. Silencing ACTL8 suppressed the proliferation, migration and invasion, also promoted the apoptosis in MDA-MB-231 and BT-549 cells. Moreover, we found that silencing ACTL8 could inhibit the activation of PI3K/AKT/mTOR signaling pathway in MDA-MB-231 and BT-549 cells. Meanwhile, the impact of silencing ACTL8 on the proliferation, apoptosis, migration and invasion was enhanced by PI3K/AKT/mTOR pathway inhibitor (Wortmannin) and reversed by PI3K/AKT/mTOR pathway activator (740Y-P). Conclusion Our data demonstrated that ACTL8 may facilitate the proliferation, migration and invasion, while inhibiting apoptosis through activating PI3K/Akt/mTOR signaling pathway in TNBC.
Collapse
Affiliation(s)
- Shaoxia Fan
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Shen Yan
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Yang Yang
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Jian Shang
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Min Hao
- Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| |
Collapse
|