1
|
Happy K, Mudondo J, Yim NH, Kang Y. Asarum sieboldii, a Potential Ethnomedicinal Herb in Dentistry and Oral Health. Int Dent J 2025; 75:100816. [PMID: 40328202 DOI: 10.1016/j.identj.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Asarum sieboldii, a species of wild ginger native to East Asia, has long been recognised as an important herb in Asian traditional medicine. It has been applied in the treatment of toothache, cough, asthma, and sinusitis. A. sieboldii has gained global interest because it offers solutions to multiple health concerns. The plant is renowned for its anti-inflammatory, analgesic, antimicrobial, antifungal, and antioxidant properties. Its roots exhibit a wide range of biological and pharmacological effects. The plant contains several chemical constituents, including methyleugenol, 3,4,5-trimethoxytoluene, and safrole, which contribute to its medicinal benefits. Whereas literature search highlights the potential application of A. sieboldii in herbal medicine, to date its application in dentistry remains largely unexplored, with the existing literature vastly fragmented in various sources. This review therefore, provides a comprehensive overview of the potential application of A. sieboldii in dentistry and oral health. The plant shows considerable promise and appears to be effective for managing common oral diseases such as tooth decay, periodontal diseases, toothache, oral cancer, oral ulcers, and gingivitis. Its ability to inhibit nitric oxide release, along with its neuroprotective effects, further enhances its potential for relieving pain and inflammation. With these therapeutic benefits, A. sieboldii presents a promising natural alternative or a complementary option to conventional dental treatments, capable of addressing a wide range of oral health conditions. The findings from this review could serve as a solid foundation for future research, supporting the development of high-quality, safe, and effective A. sieboldii-based products in dentistry and oral health.
Collapse
Affiliation(s)
- Kenneth Happy
- Korean Convergence Medical Science Major, University of Science and Technology, Daejeon, Republic of Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, Jeollanam-Do, Republic of Korea
| | - Joyce Mudondo
- Korean Convergence Medical Science Major, University of Science and Technology, Daejeon, Republic of Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, Jeollanam-Do, Republic of Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu, Republic of Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology, Daejeon, Republic of Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, Jeollanam-Do, Republic of Korea.
| |
Collapse
|
2
|
Huang P, Xiang T, Wang Q, Han L, Zheng S, Zhang D, Huang F, Duan B, Li J, Li H, Huang T. Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics. Biomed Chromatogr 2024; 38:e5851. [PMID: 38449348 DOI: 10.1002/bmc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Xixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.
Collapse
Affiliation(s)
- Ping Huang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Xiang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Qiong Wang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Sili Zheng
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huamao Li
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Tao Huang
- Department of Orthopedics, Wuhan Red Cross Hospital, Wuhan, China
| |
Collapse
|
3
|
Wang J, Jia Z, Pan W, Hu J. Crotonis Fructus-induced gut microbiota and serum metabolic disorders in rats. Appl Microbiol Biotechnol 2023; 107:6949-6962. [PMID: 37713114 DOI: 10.1007/s00253-023-12763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Crotonis Fructus (CF), a poisonous traditional laxative, has been used to treat constipation, edema, ascites, and inflammation for more than 2000 years. However, CF possesses toxicity and its toxic mechanism is still unclear. Thus, this research explored the deleterious impacts and underlying mechanisms of CF by evaluating alterations in gut microbiota composition and metabolites. High-throughput sequencing was employed on the 16S rDNA gene to explore the intestinal flora. The untargeted metabolomics method was utilized for evaluating serum metabolomics analysis. The results showed that CF could induce obvious hepatic and gastrointestinal damage by histopathologic morphology of the liver, stomach, duodenum, and colon. According to 16S rDNA sequencing, CF can cause gut microbiota disturbance in rats, and the abundance of opportunistic pathogens such as Clostridia_UCG_014_unclassified increased significantly, while the levels of beneficial bacterial Lactobacillus remarkably declined after CF treatment. Additionally, metabolomics analysis demonstrated that CF may induce toxicity by disrupting the glycerophospholipid metabolism pathway and metabolites such as phosphatidylcholine and phosphatidylethanolamine. Moreover, a correlation study revealed the link between intestinal flora, serum metabolites, and toxicity-related biochemical markers. The results provide a new idea for the research and clinical application of toxic traditional medicine. KEY POINTS: • Crotonis Fructus could affect the gut flora and serum metabolic disruption in SD rats. • Crotonis Fructus could promote the proliferation of harmful bacteria and inhibit beneficial bacteria. • Glycerophospholipid metabolism was disturbed by Crotonis Fructus.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zefei Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wen Pan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditonal Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Liu Y, Wang F, Guo H, Zhang D, Zhang X, Wu Z, Li H, Xian Y, Yue P, Yang M. Effect of molecular distillation on the anti-inflammatory activity and neurotoxicity of Asarum essential oil. Front Pharmacol 2023; 14:1196137. [PMID: 37284321 PMCID: PMC10239799 DOI: 10.3389/fphar.2023.1196137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and β- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - HuiWen Guo
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dingkun Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yang Xian
- College of Continuing Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Zheng S, Zhang D, Duan B, Mo G, Li J, Huang H, Wang S, Ye Y, Huang Z, Huang P, Zhang F, Huang F, Han L. Metabolomics integrated network pharmacology reveals the mechanism of Ma-Mu-Ran Antidiarrheal Capsules on acute enteritis mice. Anal Biochem 2023; 668:115116. [PMID: 36925055 DOI: 10.1016/j.ab.2023.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Acute enteritis (AE) is a type of digestive disease caused by biochemical factors that irritate the intestinal tract or pathogenic bacteria that infect it. In China, Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) have been applied against diarrhea caused by AE and bacillary dysentery for many years, but the underlying mechanisms of their beneficial effects are not known. In the present study, network pharmacology and metabolomics were performed to clarify the active ingredients of MMRAC and explore the specific mechanism of MMRAC on AE mice. A total of 43 active components of MMRAC with 87 anti-AE target genes were identified, and these target genes were enriched in IL-17 and HIF-1 signaling pathways. Integration analysis revealed that purine metabolism was the critical metabolic pathway by which MMRAC exerted its therapeutic effect against AE. Specifically, MAPK14, MMP9, PTGS2, HIF1A, EGLN1, NOS2 were the pivotal targets of MMRAC for the treatment of AE, and Western blot analysis revealed MMRAC to decrease protein levels of these pro-inflammatory signaling molecules. According to molecular docking, these key targets have a strong affinity with the MMRAC compounds. Collectively, MMRAC relieved the colon inflammation of AE mice via regulating inflammatory signaling pathways to reduce hypoxia and improved energy metabolism.
Collapse
Affiliation(s)
- Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Xinjiang Uygur Pharmaceutical Co., LTD, Urumqi, Xinjiang, 830026, China
| | - Bailu Duan
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430065, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Hailing Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Shanshan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Zhuang Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430065, China.
| |
Collapse
|
6
|
Transcriptomics and metabolomics revealed the pulmonary protective mechanism of Xixin-Ganjiang Herb Pair for warming the lungs to dissolve phlegm in COPD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123665. [DOI: 10.1016/j.jchromb.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
|
7
|
Zhang F, Duan B, Zhou Z, Han L, Huang P, Ye Y, Wang Q, Huang F, Li J. Integration of metabolomics and transcriptomics to reveal anti-chronic myocardial ischemia mechanism of Gualou Xiebai decoction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115530. [PMID: 35830899 DOI: 10.1016/j.jep.2022.115530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gualou Xiebai decoction (GLXB), a well-known classic traditional Chinese medicine formula, is a recorded and proven therapy for the management of cardiac diseases. However, its pharmacological characteristics and mechanism of action are unclear. MATERIALS AND METHODS The effects of GLXB and its mechanism of action in an isoprenaline-induced rat model of chronic myocardial ischemia (CMI) were investigated by incorporating metabonomics and transcriptomics. Meanwhile, the echocardiographic evaluation, histopathological analysis, serum biochemistry assay, TUNEL assay and western blot analysis were detected to revealed the protective effects of GLXB on CMI. RESULTS The results of echocardiographic evaluation, histopathological analysis and serum biochemistry assay revealed that GLXB had a significantly cardioprotective performance by reversing echocardiographic abnormalities, restoring pathological disorders and converting the serum biochemistry perturbations. Further, the omics analysis indicated that many genes and metabolites were regulated after modeling and GLXB administration, and maintained the marked "high-low" or "low-high" trends. Meanwhile, the results from integrated bioinformatics analysis suggested that the interaction network mainly consisted of amino acid and organic acid metabolism. The results of TUNEL assay and western blot analysis complemented the findings of integrated analysis of metabolomics and transcriptomics. CONCLUSION These findings suggested that GLXB has a curative effect in isoproterenol-induced CMI in rats. Integrated analysis based on transcriptomics and metabolomics studies revealed that the mechanism of GLXB in alleviating CMI was principally by the regulation of energy homeostasis and apoptosis, which was through a multi-component and multi-target treatment modality.
Collapse
Affiliation(s)
- Fengyun Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zhenxiang Zhou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Ping Huang
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China; College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Ye
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Qiong Wang
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China; College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
8
|
Zhang D, Duan B, Sun L, Duan Y, Zheng S, Li J, Yin H, Mu D, Hou S, Mo G, Han L, Huang F, Yin Q. Mechanism of Shiliu Buxue Syrup for anemia using integrated metabolomics and network pharmacology. Anal Biochem 2022; 653:114774. [PMID: 35690102 DOI: 10.1016/j.ab.2022.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
For many years, Shiliu Buxue Syrup (SLBXS) has been used in the treatment of anemia in Xinjiang, China. However, the potential therapeutic mechanism of SLBXS in the treatment of anemia remains unclear. We qualitatively analyzed the ingredients of SLBXS and predicted the underlying mechanisms by network pharmacology. A mice model of anemia was established by subcutaneous injection of 1-Acetyl-2-phenylhydrazine (APH). Spleen metabolomics was performed to screen potential biomarkers and pathways related to anemia. Furthermore, core targets of crucial pathways were experimentally validated. Finally, molecular docking was used for predicting interactions between compositions and targets. Network pharmacology indicated that the 230 SLBXS ingredients may affect 141 target proteins to regulate the PI3K/AKT and HIF-1 signaling pathways. Metabolomics revealed that SLBXS could mediate 30 biomarkers, such as phosphoric acid, l-pyroglutamic acid, alpha-Tocopherol, 1-stearoyl-rac-glycerol, and dihydroxyacetone phosphate, to regulate drug metabolism-other enzymes, glutathione metabolism, glycolysis or gluconeogenesis, nicotinate and nicotinamide metabolism, nitrogen metabolism, and purine metabolism. Western blot indicated that SLBXS can regulate the protein expression levels of AKT1, Bcl2, Caspase3, HIF-1α, VEGF-A, and NOS2. The molecular docking revealed that most of the compositions had a good binding ability to the core targets. Based on these findings, we speculate that SLBXS treats anemia mainly by modulating the PI3K/AKT and HIF-1 pathways and glutathione and glycolytic metabolisms.
Collapse
Affiliation(s)
- Dongning Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Li Sun
- Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, Xinjiang, 830026, China
| | - Yanfen Duan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Sili Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Hailong Yin
- Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, Xinjiang, 830026, China
| | - Dandan Mu
- Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, Xinjiang, 830026, China
| | - Shuaihong Hou
- Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, Xinjiang, 830026, China
| | - Guoyan Mo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Lintao Han
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Qiang Yin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, Xinjiang, 830026, China.
| |
Collapse
|
9
|
Determining the protective effects of Ma-Mu-Ran Antidiarrheal Capsules against acute DSS-induced enteritis using 16S rRNA gene sequencing and fecal metabolomics. Chin J Nat Med 2022; 20:364-377. [DOI: 10.1016/s1875-5364(22)60158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/20/2022]
|
10
|
Duan Y, Zhang D, Ye Y, Zheng S, Huang P, Zhang F, Mo G, Huang F, Yin Q, Li J, Han L. Integrated Metabolomics and Network Pharmacology to Establish the Action Mechanism of Qingrekasen Granule for Treating Nephrotic Syndrome. Front Pharmacol 2021; 12:765563. [PMID: 34938183 PMCID: PMC8685401 DOI: 10.3389/fphar.2021.765563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical syndrome resulting from abnormal glomerular permeability, mainly manifesting as edema and proteinuria. Qingrekasen granule (QRKSG), a Chinese Uyghur folk medicine, is a single-flavor preparation made from chicory (Cichorium intybus L.), widely used in treating dysuria and edema. Chicory, the main component in QRKSG, effectively treats edema and protects kidneys. However, the active components in QRKSG and its underlying mechanism for treating NS remain unclear. This study explored the specific mechanism and composition of QRKSG on an NS rat model using integrated metabolomics and network pharmacology. First, metabolomics explored the relevant metabolic pathways impacted by QRKSG in the treatment of NS. Secondly, network pharmacology further explored the possible metabolite targets. Afterward, a comprehensive network was constructed using the results from the network pharmacology and metabolomics analysis. Finally, the interactions between the active components and targets were predicted by molecular docking, and the differential expression levels of the target protein were verified by Western blotting. The metabolomics results showed “D-Glutamine and D-glutamate metabolism” and “Alanine, aspartate, and glutamate metabolism” as the main targeted metabolic pathways for treating NS in rats. AKT1, BCL2L1, CASP3, and MTOR were the core QRKSG targets in the treatment of NS. Molecular docking revealed that these core targets have a strong affinity for flavonoids, terpenoids, and phenolic acids. Moreover, the expression levels of p-PI3K, p-AKT1, p-mTOR, and CASP3 in the QRKSG group significantly decreased, while BCL2L1 increased compared to the model group. These findings established the underlying mechanism of QRKSG, such as promoting autophagy and anti-apoptosis through the expression of AKT1, CASP3, BCL2L1, and mTOR to protect podocytes and maintain renal tubular function.
Collapse
Affiliation(s)
- Yanfen Duan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiang Yin
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| |
Collapse
|