Yang Y, Song S, Nie Y, Chen R, Chen P. Lentinan alleviates arsenic-induced hepatotoxicity in mice via downregulation of OX40/IL-17A and activation of Nrf2 signaling.
BMC Pharmacol Toxicol 2022;
23:16. [PMID:
35313999 PMCID:
PMC8939159 DOI:
10.1186/s40360-022-00557-7]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background
Arsenic, existing ubiquitously in soil, drinking water, or food, is well known to be an environmental pollutants concerned by European Food Safety Authority. Lentinan, a beta-1,6;1,3-glucan extracts from Lentinus edodes, which has the properties of antioxidant and immunomodulation, present study explored the pharmacological effects of Lentinan on arsenic induced hepatotoxicity in mice.
Methods
Mice experiments were performed by sodium arsenite (SA) treatment or Lentinan intervention, then histopathology, ELISA, Flow Cytometry, or Western-Blotting were applied to evaluate hepatic injury, oxidative stress, CD4+ type 17 helper T (Th17) cells, CD4+CD25+Foxp3+ regulatory T cells (Tregs), T cells receptor OX40/CD134, IL-17A, NLRP3, Nrf2, and NQO1.
Results
SA treatment showed hepatic pathological injury and the elevations of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) in serum, and induced the increases of malondialdehyde (MDA), Th17 cells, OX40 or IL-17A in liver tissues, which were consistently ameliorated by Lentinan intervention. Further, immunoblotting experiments showed that Lentinan intervention downregulated the levels of OX40, IL-17A, and NLRP3 signals, while elevated the levels of anti-oxidative Nrf2, NQO1 signals compared to arsenic treatment group. For Tregs, Lentinan intervention showed no significant difference from SA treatment group.
Conclusion
Lentinan antagonizes SA-induced hepatotoxicity in mice, may be involved in the downregulations of pro-inflammatory OX40 or IL-17A and the activation of anti-oxidative Nrf2, NQO1 signals.
Supplementary Information
The online version contains supplementary material available at 10.1186/s40360-022-00557-7.
Collapse