1
|
Yang X, Li W, Han X, Wang J, Dai J, Ye X, Meng M. Apatinib weakens proliferation, migration, invasion, and angiogenesis of thyroid cancer cells through downregulating pyruvate kinase M2. Sci Rep 2024; 14:879. [PMID: 38195651 PMCID: PMC10776835 DOI: 10.1038/s41598-023-50369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Thyroid cancer (TC) is the most frequent malignancy of the endocrine system. Apatinib, as an anti-angiogenic agent, has been applied in the therapy of several cancers. However, the function and mechanism of Apatinib in TC have not been clearly elucidated. After processing with Apatinib alone or combined PKM2 overexpression plasmids, cell proliferation, migration, and invasion were analyzed by EdU staining, CCK-8, wound healing, and Transwell. Meanwhile. HUVECs were incubated with the conditioned medium prepared from cell culture medium, and tube formation and VEGFR2 expression in HUVECs were examined using tube formation and immunofluorescence (IF) assays. Besides, we established a nude mouse xenograft model by lentivirus-mediated PKM2 shRNAs, and tested the growth of tumors; the pathological structure was analyzed with H&E staining. And the expressions of N-cadherin, Vimentin, E-cadherin, PKM2, VEGFA, VEGFR2, and Ki67 were determined by immunohistochemistry or Western blot. Apatinib could prominently suppress proliferation, migration, invasion, and HUVEC tube formation in SW579 and TPC-1 cells. Besides, we discovered that Apatinib had a significant inhibitory role on the expression of pyruvate kinase M2 (PKM2) in TC cells. And PKM2 overexpression also could notably reverse Apatinib-mediated inhibition of TC progression. Moreover, PKM2 shRNAs were applied to TC xenografts, resulting in significant reduction in tumor volume and suppression of angiogenesis-related protein expression. In summary, Apatinib has a regulatory role in TC progression, and Apatinib can block cancer cell angiogenesis by downregulating PKM2. This will provide a theoretical basis for therapy of TC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Xiaoying Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Jiao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Jianjian Dai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| | - Min Meng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Sun CX, Li DH, Xu YP, Yang ZF, Wei LY, Gao YM, Liu Y, Yan CH, Li YZ. Hua-Zhuo-Jie-Du Decoction Combined with Cisplatin Inhibits the Development of Gastric Cancer Cells by Regulating Immune and Autophagy Signaling. Biol Pharm Bull 2024; 47:1823-1831. [PMID: 39522975 DOI: 10.1248/bpb.b24-00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Host immunity and autophagy of cancer cells markedly impact the development of gastric cancer. Hua-Zhuo-Jie-Du decoction (TDP) has been used in gastritis clinically. This study aimed to evaluate the effects of TDP combined with cisplatin (DDP) on gastric cancer and explore the molecular mechanism. A total of 16 BALB/c nude mice were used to model the SGC7901 cells xenograft and treated with TDP and DDP or both, with the model group as the control. Hematoxylin-Eosin (H&E) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining were performed, and the expression levels of CD31 and Ki-67 were quantified by immunohistochemistry staining. Additionally, cyclooxygenase (COX)-2, matrix metalloproteinas (MMP)-2, and MMP-9 expression levels were quantified using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). WB was used to determine Cleaved-caspase3, Beclin-1, LC3B, and p-p62 levels. Lastly, flow cytometry was employed to evaluate immune responses in mice. TDP and DDP significantly decreased tumor weight and nuclear division, resulting in loosely distributed cells. Besides, TDP and DDP down-regulated the protein expression levels of Ki-67, CD31, COX-2, MMP-2, and MMP-9, as well as decreased the number of CD4+ IL-17+ cells. Conversely, TDP and DDP up-regulated Cleaved-caspase3 expression and the proportion of CD3+/CD4+ and CD8+/CD3+ cells. Notably, optimal effects were achieved using the combination of DDP and TDP. Furthermore, DDP increased the LCII/LCI ratio and the Beclin-1 levels while down-regulating p62 levels. However, TDP alleviated these effects. These results collectively indicated that the combination of TDP with DDP can inhibit the development of gastric cancer cells by mediating the immune and autophagy signaling pathways.
Collapse
Affiliation(s)
| | - De-Hui Li
- Second Oncology, Hebei Province Hospital of TCM
| | - Ya-Pei Xu
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Zhu-Feng Yang
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Li-Ying Wei
- Second Oncology, Hebei Province Hospital of TCM
| | | | - Yi Liu
- Second Oncology, Hebei Province Hospital of TCM
| | - Cui-Huan Yan
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine
| | - Yong-Zhang Li
- Department of Urology, Hebei Province Hospital of Chinese Medicine
| |
Collapse
|
3
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
4
|
Nojima Y, Aoki M, Re S, Hirano H, Abe Y, Narumi R, Muraoka S, Shoji H, Honda K, Tomonaga T, Mizuguchi K, Boku N, Adachi J. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Comput Struct Biotechnol J 2023; 21:2172-2187. [PMID: 37013003 PMCID: PMC10066531 DOI: 10.1016/j.csbj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.
Collapse
Affiliation(s)
- Yosui Nojima
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560–8531, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Suyong Re
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya 464–8681, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104–0045, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Proteobiologics Co., Ltd., Osaka 567–0085, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Institute for Protein Research, Osaka University, Osaka 565–0871, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108–8639, Japan
- Correspondence to: Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, 4–6-1 Minato-ku, Shiroganedai, Tokyo 108–8639, Japan.
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Correspondence to: Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7–6-8 Saito-asagi, Ibaraki, Osaka 567–0085, Japan.
| |
Collapse
|
5
|
Hu X, Zhao S, Cai Y, Swain SS, Yao L, Liu W, Yan T. Network Pharmacology-Integrated Molecular Docking Reveals the Expected Anticancer Mechanism of Picrorhizae Rhizoma Extract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268773. [PMID: 36158891 PMCID: PMC9507705 DOI: 10.1155/2022/3268773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
This study sought to explore the anticancer mechanism of Picrorhizae Rhizoma (PR) extract based on network pharmacology and molecular docking. The potential chemicals of PR were screened through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and relevant literatures. Corresponding targets of active ingredients were found with the help of the UniProtKB database, and therapeutic targets for cancer action were screened with the help of the GeneCards database. We used Cytoscape software to construct the compound-target-pathway network of PR extract. We utilized the STRING database to obtain the protein-protein interaction (PPI) network. We used DAVID database combining Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, molecular docking was employed for initial efficacy checking. We have identified 16 potential active components of PR through screening, involving 112 disease action targets. Utilizing the GeneCards database, 112 intersecting targets between PR extract and cancer were found, which mainly exerts anticancer effects by regulating tumor necrosis factor (TNF), recombinant caspase 3 (CASP3), c-Jun NH2-terminal kinase (JNK)/JUN, epidermal growth factor receptor (EGFR), and estrogen receptor-1 (ESR1) with some other target genes and pathways associated with cancer. The major anticancer species are prostate cancer, colorectal cancer, small cell lung cancer, etc. In the molecular docking study, herbactin had a strong affinity for TNF. Based on network pharmacology and molecular docking studies, PR and their compounds have demonstrated potential anticancer activities against several key targets. Our preliminary findings provide a strong foundation for further experiments with PR constituents.
Collapse
Affiliation(s)
- Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Shengchao Zhao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023 Odisha, India
| | - Liangliang Yao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
6
|
Apatinib plus chemotherapy versus chemotherapy alone as neoadjuvant therapy in locally advanced gastric carcinoma patients: a prospective, cohort study. Ir J Med Sci 2022:10.1007/s11845-022-03075-x. [PMID: 35819743 DOI: 10.1007/s11845-022-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Apatinib, a small molecule targeting VEGFR2, is commonly used for advanced gastric cancer treatment. This prospective cohort study further investigated the efficacy and safety of neoadjuvant apatinib plus chemotherapy in locally advanced gastric carcinoma patients. METHODS Ninety-six locally advanced gastric carcinoma patients were divided into the apatinib plus chemotherapy group (N = 45) and chemotherapy group (N = 51) according to their chosen treatment. Apatinib was administered (375 mg/day), and S-1 plus oxaliplatin (SOX) or oxaliplatin plus capecitabine (CapOx) was given as chemotherapy, for 3 cycles with 3 weeks a cycle before surgery. RESULTS The objective response rate (62.2% vs. 37.3%, P = 0.015) and pathological response grade (P = 0.011) were better; meanwhile, the tumor-resection rate (95.6% vs. 84.3%, P = 0.143) and pathological complete response rate (23.3% vs. 9.3%, P = 0.080) exhibited increasing trends (without statistical significance) in the apatinib plus chemotherapy group compared with the chemotherapy group. Additionally, the apatinib plus chemotherapy group achieved prolonged disease-free survival (DFS) (P = 0.019) and overall survival (OS) (P = 0.047) compared with the chemotherapy group. After adjusted by multivariate Cox's regression analysis, neoadjuvant apatinib plus chemotherapy was still superior to chemotherapy regarding DFS (hazard ratio (HR): 0.277, P = 0.014) and OS (HR: 0.316, P = 0.038). Notably, the incidences of adverse events between the two groups were not different (P > 0.050). Moreover, the most common adverse events of neoadjuvant apatinib plus chemotherapy were leukopenia (42.2%), fatigue (37.8%), hypertension (37.8%), and anemia (31.1%). CONCLUSION Neoadjuvant apatinib plus chemotherapy realizes better clinical response, pathological response, survival profile, and non-inferior safety profile compared to chemotherapy in locally advanced gastric carcinoma.
Collapse
|