1
|
Carestia E, Di Giuseppe F, Kazemi M, Ramahi M, Priyadarshi U, Giuliani P, De Francesco P, Schips L, Di Ilio C, Ciccarelli R, Di Iorio P, Angelucci S. Significant Changes in Low-Abundance Protein Content Detected by Proteomic Analysis of Urine from Patients with Renal Stones After Extracorporeal Shock Wave Lithotripsy. BIOLOGY 2025; 14:482. [PMID: 40427671 PMCID: PMC12108638 DOI: 10.3390/biology14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025]
Abstract
Extracorporeal shock wave lithotripsy (ESWL), although a highly effective method for the treatment of kidney stones, can cause significant kidney damage. Since urinary protein composition directly reflects kidney function, proteomic analysis of this fluid may be useful to identify changes in protein levels induced by patient exposure to ESWL as a sign of kidney damage. To this end, we collected urine samples from 80 patients with nephrolithiasis 2 h before and 24 h after exposure to ESWL, which were concentrated and subsequently processed with a commercially available enrichment method to extract low-abundance urinary proteins. These were then separated by 2D electrophoresis and subsequently analyzed by a proteomic approach. A large number of proteins were identified as being related to inflammatory, fibrotic, and antioxidant processes and changes in the levels of some of them were confirmed by Western blot analysis. Therefore, although further experimental confirmation is needed, our results demonstrate that ESWL significantly influences the low urinary protein profile of patients with nephrolithiasis. Notably, among the identified proteins, matrix metalloproteinase 7, alpha1-antitrypsin, and clusterin, as well as dimethyl arginine dimethyl amino hydrolase 2 and ab-hydrolase, may play an important role as putative biomarkers in the monitoring and management of ESWL-induced renal damage.
Collapse
Affiliation(s)
- Elena Carestia
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Di Giuseppe
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mohammad Kazemi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Massoumeh Ramahi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Uditanshu Priyadarshi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Piergustavo De Francesco
- Urology Unit, Azienda Sanitaria Locale 2, San Pio Hospital, Via San Camillo de Lellis, 66054 Vasto, Italy;
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Carmine Di Ilio
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Stefania Angelucci
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
WANG Z, LI Y, WANG D, MA B, MIAO L, REN J, LIU J, LIU J. Proteomics analysis of coronary atherosclerotic heart disease with different Traditional Chinese Medicine syndrome types before and after percutaneous coronary intervention. J TRADIT CHIN MED 2024; 44:554-563. [PMID: 38767640 PMCID: PMC11077157 DOI: 10.19852/j.cnki.jtcm.20240408.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To investigate the underlying protein molecular mechanisms of "Qi stagnation and blood stasis syndrome" (QS) and "Qi deficiency and blood stasis syndrome" (QD), as two subtypes of coronary artery disease (CAD) in Traditional Chinese Medicine (TCM), following percutaneous coronary intervention (PCI). METHODS In this study, a total of 227 CAD patients with QS and 211 CAD patients with QD were enrolled; all participants underwent PCI. Label-free quantification proteomics were employed to analyze the changes in serum in two subtypes of CAD patients before and 6 months after PCI, aiming to elucidate the intervention mechanism of PCI in treating CAD characterized by two different TCM syndromes. RESULTS Biochemical analysis revealed significant changes in tumor necrosis factor-α, high density lipoprotein cholesterol, blood stasis clinical symptoms observation, and Gensini levels in both patient groups post-PCI; Proteomic analysis identified 79 and 95 differentially expressed proteins in the QS and QD patient groups, respectively, compared to their control groups. complement C8 alpha chain, complement factor H, apolipoprotein H, apolipoprotein B, plasminogen, carbonic anhydrase 2, and complement factor I were altered in both comparison groups. Furthermore, enrichment analysis demonstrated that cell adhesion and connectivity-related processes underwent changes in QS patients post-PCI, whereas lipid metabolism-related pathways, including the peroxisome proliferator-activated receptor signaling pathway and extracellular matrix receptor interaction, underwent changes in the QD group. The protein-protein interaction network analysis further enriched 52 node proteins, including apolipoprotein B, lipoprotein (a), complement C5, apolipoprotein A4, complement C8 alpha chain, complement C8 beta chain, complement C8 gamma chain, apolipoprotein H, apolipoprotein A-Ⅱ, albumin, complement C4-B, apolipoprotein C3, among others. The functional network of these proteins is posited to contribute to the pathophysiology of CAD characterized by TCM syndromes. CONCLUSION The current quantitative proteomic study has preliminarily identified biomarkers of CAD in different TCM subtypes treated with PCI, potentially laying the groundwork for understanding the protein profiles associated with the treatment of various TCM subtypes of CAD.
Collapse
Affiliation(s)
- Zhibo WANG
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Ying LI
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Daoping WANG
- 2 the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100098, China
| | - Bo MA
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Lan MIAO
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Junguo REN
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Jinghua LIU
- 3 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianxun LIU
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| |
Collapse
|
3
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|