1
|
Lo J, Kung CC, Cheng TJR, Wong CH, Ma C. Structure-Based Mechanism and Specificity of Human Galactosyltransferase β3GalT5. J Am Chem Soc 2025; 147:10875-10885. [PMID: 40130308 PMCID: PMC11969544 DOI: 10.1021/jacs.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
Human β1,3-galactosyltransferase 5 (β3GalT5) is a key enzyme involved in the synthesis of glycans on glycoproteins and glycolipids that are associated with various important biological functions, especially tumor malignancy and cancer progression, and has been considered as a promising target for development of anticancer agents. In this study, we determined the X-ray structures of β3GalT5 in complex with the stable donor analogue UDP-2-fluorogalactose or the native donor substrate UDP-galactose (UDP-Gal) and several glycan acceptors at different reaction steps. Based on the structures obtained from our experiments, β3GalT5 catalyzes the transfer of galactose from UDP-Gal to a broad spectrum of glycan acceptors with an SN2-like mechanism; however, in the absence of a glycan acceptor, UDP-Gal is slowly converted to UDP and two other products, one is galactose through an SN2-like mechanism with water as an acceptor and the other is an oxocarbenium-like product, presumably through an SN1-like mechanisms. The structure, mechanism, and specificity of β3GalT5 presented in this study advance our understanding of enzymatic glycosylation and provide valuable insights for application to glycan synthesis and drug design targeting β3GalT5-associated cancer.
Collapse
Affiliation(s)
- Jennifer
M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
2
|
Ye W, Lu J, Yang Z, Yang B, Zhu G, Xue C. Long Non-Coding RNA B3GALT5-AS1 Suppresses Keloid Progression by Regulating the β-Trcp1-Mediated Ubiquitination of HuR. Clin Cosmet Investig Dermatol 2024; 17:967-979. [PMID: 38707608 PMCID: PMC11069380 DOI: 10.2147/ccid.s447772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Background lncRNA β‑1,3‑galactosyltransferase 5‑AS1 (B3GALT5-AS1) plays a vital regulatory role in colon and gastric cancers. However, the biological functions and regulatory mechanisms of B3GALT5-AS1 in keloid progression remain unknown. This study aims to investigate the molecular mechanisms in the B3GALT5-AS1-regulated keloid proliferation and invasion. Methods Secondary mining of the lncRNA sequencing data from GSE158395 was conducted to screen differentially expressed lncRNAs between keloid and normal tissues. MTT, cell migration and invasion assays were performed to detect the effects of B3GALT5-AS1 on keloid fibroblasts (KFs) proliferation and metastasis. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were also determined to evaluate glycolysis in KFs. RNA pull-down and RNA-protein immunoprecipitation assays were used to confirm the interaction between B3GALT5-AS1 and Hu-Antigen R (HuR). Further ubiquitination and rescue experiments were performed to elucidate the regulatory relationship between B3GALT5-AS1 and HuR. Results B3GALT5-AS1 was significantly down-regulated in keloid tissues and fibroblasts. B3GALT5-AS1 overexpression significantly inhibited KFs proliferation, glycolysis, invasion, and migration and promoted cell apoptosis, whereas silencing B3GALT5-AS1 inhibited these effects. Moreover, B3GALT5-AS1 binds to HuRand reduces its stability through β-Transducin repeats-containing protein 1 (β-Trcp1)-mediated ubiquitination. Overexpression of HuR reversed the inhibition of B3GALT5-AS1 on cell proliferation, migration, and invasion in KFs, where glycolysis pathway was involved. Conclusion Our findings illustrate that B3GALT5-AS1 has great effect on inhibition of keloid formation, which provides a potential target for keloid therapy.
Collapse
Affiliation(s)
- Wei Ye
- Department of Burn Surgery, the First Clinical Medical College of Guangdong Medical University, Huizhou, 516001, People’s Republic of China
| | - Junwen Lu
- Department of Burn Surgery, the First Clinical Medical College of Guangdong Medical University, Huizhou, 516001, People’s Republic of China
| | - Zuxian Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Ben Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Guanya Zhu
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Chunli Xue
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| |
Collapse
|
3
|
Ioannou I, Chatziantoniou A, Drenios C, Christodoulou P, Kourti M, Zaravinos A. Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Kidney Cancers. Int J Mol Sci 2023; 24:6577. [PMID: 37047552 PMCID: PMC10094846 DOI: 10.3390/ijms24076577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and β-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.
Collapse
Affiliation(s)
- Ioanna Ioannou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Angeliki Chatziantoniou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Constantinos Drenios
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | | | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
4
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
5
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|