1
|
Zhu Y, Li Y, Cao Z, Xue J, Wang X, Hu T, Han B, Guo Y. Mechanically strained osteocyte-derived exosomes contained miR-3110-5p and miR-3058-3p and promoted osteoblastic differentiation. Biomed Eng Online 2024; 23:44. [PMID: 38705993 PMCID: PMC11070085 DOI: 10.1186/s12938-024-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS A mechanical tensile strain of 2500 με at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.
Collapse
Affiliation(s)
- Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Jindong Xue
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Xiaoyan Wang
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Tingting Hu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
3
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Trabecular Bone Microarchitecture Improvement Is Associated With Skeletal Nerve Increase Following Aerobic Exercise Training in Middle-Aged Mice. Front Physiol 2022; 12:800301. [PMID: 35273515 PMCID: PMC8902445 DOI: 10.3389/fphys.2021.800301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Advancing age is associated with bone loss and an increased risk of osteoporosis. Exercise training improves bone metabolism and peripheral nerve regeneration, and may play a critical role in osteogenesis and increase in skeletal nerve fiber density. In this study, the potential positive role of aerobic exercise training in bone metabolism and skeletal nerve regeneration was comprehensively evaluated in 14-month-old male C57BL/6 mice. The mice were divided into two groups: no exercise (non-exercise group) and 8-weeks of aerobic exercise training (exercise group), with six mice in each group. Dual-energy X-ray absorptiometry and micro-computed tomography showed that femoral and tibial bone parameters improved after aerobic exercise training. Greater skeletal nerve fiber density was also observed in the distal femoral and proximal tibial periostea, measured and analyzed by immunofluorescence staining and confocal microscopy. Pearson correlation analysis revealed a significant association between skeletal nerve densities and trabecular bone volume/total volume ratios (distal femur; R 2 = 0.82, p < 0.05, proximal tibia; R 2 = 0.59, p = 0.07) in the exercise group; while in the non-exercise group no significant correlation was found (distal femur; R 2 = 0.10, p = 0.54, proximal tibia; R 2 = 0.12, p = 0.51). Analysis of archival microarray database confirmed that aerobic exercise training changed the microRNA profiles in the mice femora. The differentially expressed microRNAs reinforce the role of aerobic exercise training in the osteogenic and neurogenic potential of femora and tibiae. In conclusion, 8-weeks of aerobic exercise training positively regulate bone metabolism, an effect that paralleled a significant increase in skeletal nerve fiber density. These findings suggest that aerobic exercise training may have dual utility, both as a direct stimulator of bone remodeling and a positive regulator of skeletal nerve regeneration.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Yun-A Shin
- Department of Exercise Prescription and Rehabilitation, College of Sports Science, Dankook University, Cheonan, South Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women's University, Seoul, South Korea
| |
Collapse
|
4
|
Lee HJ, Song YM, Baek S, Park YH, Park JB. Vitamin D Enhanced the Osteogenic Differentiation of Cell Spheroids Composed of Bone Marrow Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111271. [PMID: 34833489 PMCID: PMC8625339 DOI: 10.3390/medicina57111271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Background and Objectives: Vitamin D is a bone modulator widely used in regenerative medicine. This study aimed to analyze the effects of vitamin D on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Materials and Methods: Spheroids were fabricated using human bone marrow-derived stem cells, and were cultured in the presence of vitamin D at concentrations of 0, 0.1, 1, 10, and 100 nM. Stem cell spheroids were fabricated and the morphological evaluation was conducted on days 1, 3, 7 and 14. Determination of qualitative cellular viability was performed with Live/Dead Kit assay on days 1 and 7. Quantitative cellular viability was evaluated with Cell Counting Kit-8 on days 1, 3, 7, and 14. To analyze the osteogenic differentiation of cell spheroids, alkaline phosphatase activity assays were performed with commercially available kit on days 7 and 14. Real-time polymerase chain reaction was used to determine the expression levels of RUNX2, BSP, OCN, and COL1A1 on days 7 and 14. Results: The stem cells produced well-formed spheroids, and addition of vitamin D did not result in any noticeable changes in the shape. The addition of vitamin D did not significantly change the diameter of the spheroids at 0, 0.1, 1, 10, or 100 nM concentrations. Quantitative cell viability results from days 1, 3, 7 and 14 showed no significant difference between groups (p > 0.05). There was significantly higher alkaline phosphatase activity in the 0.1 nM group when compared with the control group on day 14 (p < 0.05). Real-time polymerase chain reaction results demonstrated that the mRNA expression levels of RUNX2, OCN, and COL1A1 were significantly increased when vitamin D was added to the culture. Conclusions: Based on these findings, we concluded that vitamin D could be applied to the increased osteogenicity of stem cell spheroids.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-J.L.); (Y.-M.S.)
| | - Young-Min Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-J.L.); (Y.-M.S.)
| | | | - Yoon-Hee Park
- Ebiogen, #405, Sungsu A1 Center 48 Ttukseom-ro 17-ga-gil, Seongdong-gu, Seoul 04785, Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (H.-J.L.); (Y.-M.S.)
- Correspondence: ; Tel.: +82-2-2258-6290
| |
Collapse
|