1
|
Feizi N, Mohamadzadeh-Nabiei M, Vahedi H, Farabi Maleki S, Jafarizadeh A. Therapeutic role of erythropoietin in methanol induced optic neuropathy: a systematic review. Daru 2024; 33:2. [PMID: 39613913 PMCID: PMC11607285 DOI: 10.1007/s40199-024-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
PURPOSE Despite various therapeutic attempts, an approved treatment for Methanol-induced optic neuropathy (MION), a sight-threatening disorder, is still lacking. Erythropoietin known as an erythropoietic cytokine, possesses various non-hematopoietic properties that make it a candidate for MION treatment. This systematic review aims to assess the potential therapeutic role of erythropoietin in MION. METHOD We systematically searched English and Persian databases including PubMed, Scopus, Embase, Web of Science, and Scientific Information Database (SID) as of July 2024. Two independent authors screened the articles based on their titles, abstracts, and full texts to finalize the included articles in this study. The selected articles underwent quality assessments via the Joanna Briggs Institute (JBI) checklists. RESULTS Out of 139 studies identified in the databases, 11 were finally included in the analysis. These studies encompassed 212 participants, with 192 receiving erythropoietin treatment. Visual acuity (VA) improved in 184 patients, with improvements ranging from no light perception to full vision recovery, or minor enhancements such as an improvement from 1.75 ± 0.72 to 1.32 ± 0.79 LogMAR. Only 8 patients showed no change or experienced deterioration. Additionally, 21 cases exhibited a reduction in retinal nerve fiber layer thickness, with one showing a reduction towards the normal range. CONCLUSION This review highlights erythropoietin's positive impact on VA in patients with MION. However, simultaneous use of erythropoietin and corticosteroids in studies without control groups complicates evaluating erythropoietin's independent efficacy. Future research should involve large, controlled trials to clarify erythropoietin's role and establish it as a standard treatment. PROSPERO REGISTRATION NUMBER CRD42023485772.
Collapse
Affiliation(s)
- Neda Feizi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mohamadzadeh-Nabiei
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Vahedi
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Shadi Farabi Maleki
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ali Jafarizadeh
- Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.
| |
Collapse
|
2
|
Papic M, Zivanovic S, Vucicevic T, Vuletic M, Papic MV, Milivojević N, Mirić A, Miletic Kovacevic M, Zivanovic M, Stamenkovic M, Zivkovic V, Mitrovic S, Jakovljevic V, Ljujic B, Popovic M. Effects of direct pulp capping with recombinant human erythropoietin and/or mineral trioxide aggregate on inflamed rat dental pulp. Mol Cell Biochem 2024; 479:2679-2695. [PMID: 37880442 DOI: 10.1007/s11010-023-04868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE This study aimed to evaluate the dental pulp responses to recombinant human erythropoietin (rhEPO) and/or mineral trioxide aggregate (MTA) in pulp capping of inflamed dental pulp in vivo. MATERIALS AND METHODS In accordance with ARRIVE guidelines, pulp inflammation was induced by exposing the maxillary first molars (n = 64) of Wistar rats (n = 32) to the oral environment for two days. The exposed pulps were randomly assigned four groups based on the pulp capping material: rhEPO, MTA, MTA + rhEPO, or an inert membrane. An additional eight rats formed the healthy control group. After four weeks, the animals were euthanized, and histological, qRT-PCR, and spectrophotometric techniques were employed to analyze the left maxillary segments, right first maxillary molars, and blood samples, respectively. Statistical significance was set at p < 0.05 and < 0.001. RESULTS Pulp capping with rhEPO, MTA, or MTA + rhEPO resulted in lower inflammation and higher mineralization scores compared to untreated control. MTA + rhEPO group exhibited significantly decreased expression of tumor necrosis factor-alpha, and interleukin 1-beta, while MTA group showed substantially reduced expression of interferon-gamma. Both rhEPO and MTA + rhEPO groups presented elevated dentin matrix protein 1 levels compared to untreated control. Furthermore, pulp capping with rhEPO and/or MTA led to increased transforming growth factor-beta 1 expression and reductions of pro-inflammatory/immunoregulatory cytokine ratios and prooxidative markers. Pulp capping with rhEPO also resulted in increase of systemic antioxidative stress markers. CONCLUSION Capping with rhEPO or MTA + rhEPO resulted in a favorable effect that was similar or even superior to that of MTA.
Collapse
Affiliation(s)
- Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia.
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Tamara Vucicevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Miona Vuletic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Mirjana V Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| | - Nevena Milivojević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Ana Mirić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica Popovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Str. 69, Kragujevac, Republic of Serbia
| |
Collapse
|
3
|
Gu D, Liu H, Qiu X, Yu Y, Tang X, Liu C, Miao L. Erythropoietin induces odontoblastic differentiation of human-derived pulp stem cells via EphB4-Mediated MAPK signaling pathway. Oral Dis 2023; 29:2816-2826. [PMID: 36577689 DOI: 10.1111/odi.14486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Human-derived pulp stem cells play key roles during dentinogenesis. Erythropoietin is reportedly involved in osteoblastogenesis and facilitates bone formation. However, the mechanism is still unknown. This research was to study the potential of erythropoietin in enhancing odontoblastic differentiation of human-derived pulp stem cells and to determine the underlying mechanism. METHODS The human-derived pulp stem cells were treated with erythropoietin, EphB4 inhibitor, and MAPK inhibitors, and the odontoblastic differentiation was measured by ALP staining, ALP activity assay, alizarin red S staining, and their quantitative analysis, and RT-qPCR of DSPP, DMP1, OCN, and RUNX2. The direct pulp capping model was established to evaluate the formation of tertiary dentin after treatment with erythropoietin. Western blot assay was conducted to assess relevant protein expressions in the phosphorylated EphB4 and MAPK pathway. RESULTS The results showed that erythropoietin promoted odontoblastic differentiation of human-derived pulp stem cells at 20 U/ml. Erythropoietin induced tertiary dentin formation in vivo. The potential mechanism of this was upregulating phosphorylated EphB4 and phosphorylated MAPK; furthermore, this effect could be decreased by EphB4 inhibitors, which inhibited MAPK phosphorylation. Blockage of MAPK pathways attenuated human-derived pulp stem cells' odontoblastic differentiation, suggesting that MAPK pathways are involved. CONCLUSION Erythropoietin induced tertiary dentin formation in vivo. And erythropoietin enhanced human-derived pulp stem cells' odontoblastic differentiation via the EphB4-mediated MAPK signaling pathway.
Collapse
Affiliation(s)
- Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Pediatric Dentistry, Zhengzhou Stomatology Hospital, Zhengzhou, China
| | - Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuna Tang
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Erythropoietin Activates Autophagy to Regulate Apoptosis and Angiogenesis of Periodontal Ligament Stem Cells via the Akt/ERK1/2/BAD Signaling Pathway under Inflammatory Microenvironment. Stem Cells Int 2022; 2022:9806887. [PMID: 36199627 PMCID: PMC9527112 DOI: 10.1155/2022/9806887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Angiogenic tissue engineering is a vital problem waiting to be settled for periodontal regeneration. Erythropoietin, a multieffect cytokine, has been reported as a protective factor for cell fate. According to our previous study, erythropoietin has a significantly angiogenic effect on periodontal ligament stem cells. To further explore its potential effects and mechanism, we studied biological behaviors of periodontal ligament stem cells under inflammatory microenvironment induced by different concentrations (0, 10, 20, 50, and 100 ng/mL) of tumor necrosis factor-α (TNF-α) and examined how different concentrations (0, 5, 10, 20, and 50 IU/mL) of erythropoietin changed biological behaviors of periodontal ligament stem cells. Materials and Methods. Cell Counting Kit-8 was used for cell proliferation assay. Annexin V-PI-FITC was used for cell apoptosis through flow cytometry. Matrigel plug was adopted to measure the angiogenic capacity in vitro. RNA sequencing was used to detect the downstream signaling pathway. Quantitative real-time polymerase chain reaction was conducted to examine mRNA expression level. Western blot and immunofluorescence were applied to testify the protein expression level. Results. Periodontal ligament stem cells upregulated apoptosis and suppressed autophagy and angiogenesis under inflammatory microenvironment. Erythropoietin could activate autophagy to rescue apoptosis and angiogenesis levels of periodontal ligament stem cells through the Akt/Erk1/2/BAD signaling pathway under inflammatory microenvironment. Conclusions. Erythropoietin could protect periodontal ligament stem cells from inflammatory microenvironment, which provided a novel theory for periodontal regeneration.
Collapse
|
5
|
Papic M, Zivanovic S, Vucicevic T, Papic MV, Zdravkovic D, Milivojevic N, Virijevic K, Zivanovic M, Mircic A, Ljujic B, Lukic ML, Popovic M. Pulpal expression of erythropoietin and erythropoietin receptor after direct pulp capping in rat. Eur J Oral Sci 2022; 130:e12888. [PMID: 35917324 DOI: 10.1111/eos.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the effect of direct pulp capping on the expression of erythropoietin (Epo) and Epo-receptor (Epor) genes in relation to the expression of inflammatory and osteogenic genes in rat pulp. Dental pulps of the first maxillary molars of Wistar Albino rats were exposed and capped with either calcium hydroxide or mineral trioxide aggregate, or were left untreated. After 4 wk, animals were euthanized, and maxillae were prepared for histological and real-time polymerase chain reaction analysis. Histological scores of pulp inflammation and mineralization, and relative expressions of Epo, Epor, inflammatory cytokines, and pulp osteogenic genes were evaluated. The capped pulps showed higher expressions of Epo, while the untreated pulps had the highest expression of Epor. Both calcium hydroxide and mineral trioxide aggregate downregulated the expression of tumor necrosis factor alpha compared to untreated controls, and upregulated transforming growth factor beta compared to healthy controls. Alkaline phosphatase expression was significantly higher in experimental groups. Relative expression of Epo negatively correlated with pulp inflammation, and positively correlated with pulp mineralization. Pulp exposure promoted expression of Epor and pro-inflammatory cytokines, while pulp capping promoted expression of Epo, alkaline phosphatase, and downregulated Epor and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Vucicevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Mirjana V Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dejan Zdravkovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Virijevic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica Popovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
6
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|