1
|
Sun X, Zhou Q, Xiao C, Mao C, Liu Y, Chen G, Song Y. Role of post-translational modifications of Sp1 in cardiovascular diseases. Front Cell Dev Biol 2024; 12:1453901. [PMID: 39252788 PMCID: PMC11381397 DOI: 10.3389/fcell.2024.1453901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Synopsis of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhou
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Typhoid, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guozhen Chen
- Department of Pediatrics, Yantai Yuhuangding Hospital, Shandong, China
| | - Yunjia Song
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Li Y, Cheng M, Jin J, Zhang D, Zhang S, Bai Y, Xu J. Interaction of Sp1 and Setd8 promotes vascular smooth muscle cells apoptosis by activating Mark4 in vascular calcification. Aging (Albany NY) 2024; 16:2438-2456. [PMID: 38301049 PMCID: PMC10911351 DOI: 10.18632/aging.205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Vascular calcification (VC) is directly related to high mortality in chronic kidney disease (CKD), and cellular apoptosis of vascular smooth muscle cells (VSMCs) is a crucial process in the initiation of VC. Microtubule affinity-regulating kinase 4 (Mark4), known as a serine/threonine protein kinase, can induce cell apoptosis and autophagy by modulating Akt phosphorylation. However, the potential functions and molecular mechanisms of Mark4 in VSMCs apoptosis and calcification need to be further explored. Initially, our data indicated that the mRNA expression of Mark4 was prominently elevated in high phosphorus-stimulated human VSMCs compared with the other members in Marks. Consistently, Mark4 expression was found to be significantly increased in the calcified arteries of both CKD patients and rats. In vitro, silencing Mark4 suppressed apoptosis-specific marker expression by promoting Akt phosphorylation, finally attenuating VSMCs calcification induced by high phosphate. Mechanically, the transcription factor Sp1 was enriched in the Mark4 promoter region and modulated Mark4 transcription. Moreover, SET domain-containing protein 8 (Setd8) was proved to interact with Sp1 and jointly participated in the transcriptional regulation of Mark4. Finally, rescue experiments revealed that Setd8 contributed to VSMCs apoptosis and calcification by modulating Mark4 expression. In conclusion, these findings reveal that Mark4 is transcriptionally activated by Sp1, which is interacted with Setd8, to promote VSMCs calcification through Akt-mediated antiapoptotic effects, suggesting that Mark4 represents a potent and promising therapeutic target for VC in CKD.
Collapse
Affiliation(s)
- Yun Li
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Yao Y, Zhao K, Zhang Y, Wang L, Shan W, Yan X. D-box-binding protein alleviates vascular calcification in rats with chronic kidney disease by activating microRNA-195-5p and downregulating cyclin D1. BIOMOLECULES & BIOMEDICINE 2024; 24:857-870. [PMID: 38190139 PMCID: PMC11293247 DOI: 10.17305/bb.2023.10080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 01/09/2024]
Abstract
Vascular calcification (VC) is a critical complication in chronic kidney disease (CKD), where transcription factors (TFs) and microRNAs (miRs) could potentially play a pivotal role in its pathogenesis and progression. To explore the potential molecular mechanism by which the TF D-box-binding protein (DBP) regulates the miR-195-5p/cyclin D1 (CCND1) axis and its impact on aortic VC in CKD rats, we established a rat model of CKD with VC through a 5/6 nephrectomy procedure. This model was treated with lentivirus overexpressing DBP or CCND1 to analyze their roles in aortic VC. Additionally, an in vitro cell model of VC was induced by high phosphorus. This model underwent transfection with lentivirus overexpressing DBP or miR-195-5p mimic/inhibitor to confirm their regulatory roles in aortic VC in vitro. We assessed the interactions between DBP and miR-195-5p, as well as between miR-195-5p and CCND1. Our results indicated that the expression of DBP and miR-195-5p was reduced, while CCND1 levels were elevated in both the rat and cell models. Overexpression of miR-195-5p inhibited VC in vascular smooth muscle cells (VSMCs). Bioinformatics prediction and dual luciferase assays confirmed that DBP could act as a TF to enhance miR-195-5p expression, with Ccnd1 identified as a downstream target gene of miR-195-5p. Overexpression of DBP inhibited aortic calcification in CKD rats, whereas overexpression of CCND1 produced the opposite effect. In conclusion, the TF DBP can inhibit CCND1 expression through transcriptional activation of miR-195-5p, thereby preventing VC in rats with CKD.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Cyclin D1/metabolism
- Cyclin D1/genetics
- Rats
- Male
- Rats, Sprague-Dawley
- Down-Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Ye Yao
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Kun Zhao
- Basic Medical College of Qiqihar Medical University, Qiqihar, China
| | - Yan Zhang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lihui Wang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wei Shan
- Clinical Laboratory, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xu Yan
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Wang Z, Shao L, Cai X, Zhou Y, Hong L, Li S. The potential function of SP1 and CPPED1 in restenosis after percutaneous coronary intervention. J Card Surg 2022; 37:5111-5119. [PMID: 36378884 DOI: 10.1111/jocs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Impacts of molecular pathways have been discussed recently on restenosis after percutaneous coronary intervention (PCI). Hence, this study aimed to explore the impact of calcineurin-like phosphoesterase domain containing 1 (CPPED1) and specificity protein 1 (SP1) on restenosis after PCI. METHODS A carotid balloon injury rat model was established, followed by western blot analysis of SP1 and CPPED1 expression in carotid artery (CA) tissues. After SP1 and CPPED1 were overexpressed, the neointimal hyperplasia and luminal stenosis were assessed. In addition, EPC underwent hypoxia/reoxygenation (H/R) treatment to construct an endothelial injury cell model. Then, cell proliferation, apoptosis, intracellular reactive oxygen species (ROS), and Ca2+ concentration were detected with cell counting kit-8 (CCK-8), flow cytometry, Chloromethyl-2'7'-dichlorofluorescein diacetate (CM-H2DCFDA) penetrant, and Fluo-4 AM staining, respectively. The binding relationship between SP1 and CPPED1 was verified by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS SP1 and CPPED1 were lowly expressed in the model rats with carotid balloon injury. Mechanistically, SP1 bound to the promoter region of CPPED1 to activate CPPED1 expression. Overexpressing SP1 or CPPED1 lowered neointimal formation and restenosis rate, thus promoting the recovery of carotid balloon injury in rats. Meanwhile, SP1 and CPPED1 upregulation reduced ROS levels, Ca2+ concentration, and apoptosis of EPCs, accompanied by accelerated EPC viability. CONCLUSIONS SP1 or CPPED1 overexpression reduced neointimal formation and restenosis rate in carotid balloon injury.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Elderly Medical, First People's Hospital of Fuzhou, Fuzhou, Jiangxi, People's Republic of China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Yuxuan Zhou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Sanjun Li
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
6
|
Chen C, Wu Y, Lu HL, Liu K, Qin X. Identification of potential biomarkers of vascular calcification using bioinformatics analysis and validation in vivo. PeerJ 2022; 10:e13138. [PMID: 35313524 PMCID: PMC8934046 DOI: 10.7717/peerj.13138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we know poorly about the molecular mechanisms and effective therapeutic approaches of VC. Methods The VC dataset, GSE146638, was downloaded from the Gene Expression Omnibus (GEO) database. Using the edgeR package to screen Differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to find pathways affecting VC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the DEGs. Meanwhile, using the String database and Cytoscape software to construct protein-protein interaction (PPI) networks and identify hub genes with the highest module scores. Correlation analysis was performed for hub genes. Receiver operating characteristic (ROC) curves, expression level analysis, GSEA, and subcellular localization were performed for each hub gene. Expression of hub genes in normal and calcified vascular tissues was verified by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC) experiments. The hub gene-related miRNA-mRNA and TF-mRNA networks were constructed and functionally enriched for analysis. Finally, the DGIdb database was utilized to search for alternative drugs targeting VC hub genes. Results By comparing the genes with normal vessels, there were 64 DEGs in mildly calcified vessels and 650 DEGs in severely calcified vessels. Spp1, Sost, Col1a1, Fn1, and Ibsp were central in the progression of the entire VC by the MCODE plug-in. These hub genes are primarily enriched in ossification, extracellular matrix, and ECM-receptor interactions. Expression level results showed that Spp1, Sost, Ibsp, and Fn1 were significantly highly expressed in VC, and Col1a1 was incredibly low. RT-qPCR and IHC validation results were consistent with bioinformatic analysis. We found multiple pathways of hub genes acting in VC and identified 16 targeting drugs. Conclusions This study perfected the molecular regulatory mechanism of VC. Our results indicated that Spp1, Sost, Col1a1, Fn1, and Ibsp could be potential novel biomarkers for VC and promising therapeutic targets.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Hai-lin Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kai Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|