1
|
Yuan YW, Yue ZQ, Zhou Q, Sheng J, Zou YH, Fan LJ, Xu H, Xin L. TFAP4 Regulation of MCM5 Activates the PI3K/AKT Pathway to Promote Invasion and Metastasis of Gastric Cancer. Dig Dis Sci 2025; 70:1411-1427. [PMID: 39971831 DOI: 10.1007/s10620-025-08897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
AIMS To investigate the role of transcription factor activating enhancer-binding protein 4 (TFAP4) in gastric cancer (GC) progression and elucidate its mechanism in promoting metastasis and invasion through the PI3K/AKT signaling pathway. METHODS Bioinformatics analysis was performed to assess TFAP4 expression in GC tissues. Clinical specimens were collected and validated for TFAP4 expression. Functional assays were conducted to evaluate the effects of TFAP4 overexpression and inhibition on GC cell proliferation, invasion, and metastasis. In vivo studies with HGC27 cells in BALB/c nude mice were used to assess tumor growth and metastasis. Mechanistic analysis included the measurement of MCM5 expression and activation of the PI3K/AKT signaling pathway, with PI3K inhibitor LY294002 and MCM5 knockdown applied to confirm the pathways involved. RESULTS Elevated TFAP4 expression was observed in GC tissues, and its overexpression promoted GC cell proliferation, invasion, and metastasis. Conversely, TFAP4 inhibition suppressed these behaviors. In vivo studies confirmed that TFAP4 knockdown reduced tumor growth and metastasis in nude mice. Mechanistically, TFAP4 was found to activate MCM5, which in turn facilitated GC cell invasion and metastasis. Furthermore, TFAP4 and MCM5 activated the PI3K/AKT signaling pathway, as evidenced by increased p-PI3K and p-AKT expression. The effects of TFAP4 overexpression were reversed by MCM5 knockdown or treatment with the PI3K inhibitor LY294002. CONCLUSION The TFAP4-MCM5 signaling axis promotes GC progression through the PI3K/AKT pathway, suggesting that targeting this axis could provide a potential therapeutic strategy for managing gastric cancer.
Collapse
Affiliation(s)
- Yi-Wu Yuan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Zhen-Qi Yue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Qi Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Jie Sheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Yong-Hui Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Luo-Jun Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Hesong Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China
| | - Lin Xin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Donghu District, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Wang C, Zhou C, Zhang YF, He H, Wang D, Lv HX, Yang ZJ, Wang J, Ren YQ, Zhang WB, Zhou FH. Integrating plasma exosomal miRNAs, ultrasound radiomics and tPSA for the diagnosis and prediction of early prostate cancer: a multi-center study. Clin Transl Oncol 2025; 27:1248-1262. [PMID: 39196498 DOI: 10.1007/s12094-024-03682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION This multi-center study aims to explore the roles of plasma exosomal microRNAs (miRNAs), ultrasound (US) radiomics, and total prostate-specific antigen (tPSA) levels in early prostate cancer detection. METHODS We analyzed the publicly available dataset GSE112264 to identify the differentially expressed miRNAs associated with prostate cancer. Then, PyRadiomics was used to extract image features, and least absolute shrinkage and selection operator (LASSO) was used to screen the data. Subsequently, according to strict inclusion and exclusion criteria, the internal dataset (n = 199) was used to construct a diagnostic model, and the receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA), and DeLong test were used to evaluate its diagnostic performance. Finally, we used an external dataset (n = 158) for further validation. RESULTS The number of features extracted by PyRadiomics was 851, and the number of features screened by LASSO was 23. We combined the hsa-miR-320c, hsa-miR-944, radiomics, and tPSA features to construct a joint model. The area under the ROC curve of the combined model was 0.935. In the internal validation, the area under the curve (AUC) of the training set was 0.943, and the AUC of the test set was 0.946. The AUC of the external data set was 0.910. The calibration curve and decision curve were consistent with the performance of the combined model. There was a significant difference in the prediction ability between the combined prediction model and the single index prediction model, indicating the high credibility and accuracy of the combined model in predicting PCa. CONCLUSIONS The combined prediction model, consisting of plasma exosomal miRNAs (hsa-miR-320c and hsa-miR-944), US radiomics, and clinical tPSA, can be utilized for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Chao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Han He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Zhi-Jun Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Jia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong-Qi Ren
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Wen-Bo Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China.
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Mu Y, Lu J, Yue K, Yin S, Zhang R, Zhang C. circ_0006988 promotes gastric cancer cell proliferation, migration and invasion through miRNA-92a-2-5p/TFAP4 axis. Epigenomics 2024; 16:1287-1299. [PMID: 39400106 PMCID: PMC11534138 DOI: 10.1080/17501911.2024.2410697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: To explore precise function and underlying mechanism of circ_0006988 in gastric cancer (GC).Materials & methods: GC tissues were collected clinically, and GC cells were purchased from the company. Quantitative real-time polymerase chain reaction and western blot were used to detect mRNA and protein expression. Functional analysis was performed through CCK-8, Transwell and scratch experiment. Binding relationship was validated through dual luciferase reporter and RNA immunoprecipitation assays. HGC-27 cells were subcutaneously injected into mice to construct a xenograft tumor model.Results: In GC tissues and cells, circ_0006988 overexpressed, promoting proliferation, migration and invasion. MiRNA-92a-2-5p downregulation or TFAP4 overexpression weakened effects of circ_0006988 silencing on GC progression.Conclusion: circ_0006988 facilitates GC development through miRNA-92a-2-5p/TFAP4 axis.
Collapse
Affiliation(s)
- Yalin Mu
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Juan Lu
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Kai Yue
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Shuoxin Yin
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Ru Zhang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| | - Chenghui Zhang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, 473000, China
| |
Collapse
|
4
|
Yin H, Wu D, Qu Q, Li Z, Zhao L. Ubiquitin-specific peptidase 15 regulates the TFAP4/PCGF1 axis facilitating liver metastasis of colorectal cancer and cell stemness. Biochem Pharmacol 2024; 226:116319. [PMID: 38801926 DOI: 10.1016/j.bcp.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The tumor recurrence and metastasis of colorectal cancer (CRC) are responsible for most of CRC-linked mortalities. It is an urgent need to deeply investigate the pathogenesis of CRC metastasis and look for novel targets for its treatment. The current study aimed to investigate the effects of ubiquitin-specific peptidase 15 (USP-15) on the CRC progression. In vivo, a mouse model of liver metastasis of CRC tumor was established to investigate the role of USP-15. In vitro, the migrated and invasive abilities of CRC cells were assessed by transwell assay. Cell stemness was evaluated by using sphere formation assay. The underlying mechanism was further explored by employing the co-immunoprecipitation, dual luciferase reporter assay, oligonucleotide pull-down assay, and chromatin immunoprecipitation assay. The results showed that USP-15 was upregulated in CRC patients with liver metastasis and high metastatic potential cell lines of CRC. Loss of USP-15 repressed the epithelial-to-mesenchymal transition (EMT), migration, invasion, and stemness properties of CRC cells in vitro. Downregulation of USP-15 reduced the liver metastasis of mice in vivo. USP-15 upregulation obtained the contrary effects. Subsequently, USP-15 deubiquitinated transcription factor AP-4 (TFAP4) and enhanced its protein stability. TFAP4 could transcriptionally activated polycomb group ring finger 1 (PCGF1). The pro-cancer effects of USP-15 were rescue by the knockdown of TFAP4 or PCGF1. In conclusions: USP-15 facilitated the liver metastasis by the enhancement of cell stemness and EMT in CRC, which was at least partly mediated by the deubiquitination of TFAP4 upon the upregulation of PCGF1.
Collapse
Affiliation(s)
- Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Lianrong Zhao
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China.
| |
Collapse
|
5
|
Shi Y, Zhang J, Li J, He J, Wu S, Yu M, Yang D, Ju L. USP15, activated by TFAP4 transcriptionally, stabilizes SHC1 via deubiquitination and deteriorates renal cell carcinoma. Cancer Sci 2024; 115:2617-2629. [PMID: 38847328 PMCID: PMC11309934 DOI: 10.1111/cas.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-specific peptidase 15 (USP15), a critical deubiquitinating enzyme, has been demonstrated to improve substrate stabilization by hydrolyzing the bond between the substrate and ubiquitin, and is implicated in multiple carcinogenic processes. Prompted by the information cited from The Cancer Genome Atlas (TCGA) database and the Cancer Proteogenomic Data Analysis Site (cProSite), USP15 is selectively overexpressed in clear cell renal cell carcinoma (ccRCC) samples. We aimed to investigate the function of USP15 on ccRCC malignant features, which was emphasized in its deubiquitination of SHC adaptor protein 1 (SHC1). The overexpression of USP15 promoted the capacity of proliferation, migration, and invasion in ccRCC CAKI1 and 769-P cells, and these malignant biological properties were diminished by USP15 deletion in 786-O cells. USP15 accelerated tumor growth and lung metastasis in vivo. In addition, deubiquitinase USP15 was further identified as a new protector for SHC1 from degradation by the ubiquitination pathway, the post-translational modification. In sequence, transcription factor activating enhancer binding protein 4 (TFAP4) was shown to be partly responsible for USP15 expression at the level of transcription, as manifested by the chromatin immunoprecipitation and pull-down assay. Based on the in vitro and in vivo data, we postulate that USP15 regulated by TFAP4 transcriptionally deteriorates ccRCC malignant biological properties via stabilizing SHC1 by deubiquitination.
Collapse
Affiliation(s)
- Yaxing Shi
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jing Zhang
- Department of Rheumatology and ImmunologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiaxing Li
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jieqian He
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Si Wu
- Department of BiobankShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Miao Yu
- Department of BiobankShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Da Yang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Lincheng Ju
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
6
|
Zhang Y, Liu D, Guo D, Lin W, Lu W, Hu L, Chen S, Chen C. CPSF3 regulates alternative polyadenylation of CNIH2 to promote esophageal squamous cell carcinoma progression. Cancer Lett 2024; 593:216925. [PMID: 38718887 DOI: 10.1016/j.canlet.2024.216925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
Alternative polyadenylation (APA), an important post-transcriptional regulatory mechanism, is aberrantly activated in cancer,but how APA functions in tumorigenesis remains elusive. We analyzed APA events in RNA-seq data in TCGA and reported 3'UTR alterations associated with esophageal squamous cell carcinoma (ESCC) patient prognosis and gene expression changes involving loss of tumor-suppressive miRNA binding sites. Moreover, we investigated the expression and function of cleavage and polyadenylation specific factor 3 (CPSF3), a key APA regulator in ESCC. By immunohistochemistry and qRT-PCR, we found that CPSF3 was highly expressed in ESCC tissues and associated with poor patient prognosis. Overexpression of CPSF3 enhanced, while knockdown of CPSF3 inhibited ESCC cell proliferation and migration in vitro and in vivo, as determined by colony formation, transwell assays and animal experiments. Iso-Seq and RNA-seq data analysis indicated that knockdown of CPSF3 favored use of the distal poly (A) site in the 3'UTR of Cornichon family AMPA receptor auxiliary protein 2 (CNIH2), resulting in a long-3'UTR CNIH2 isoform that produced less CNIH2 protein due to miR-125a-5p targeting and downregulating CNIH2 mRNA through a miR-125a-5p binding site in the long CNIH2 mRNA 3'UTR. Moreover, CPSF3-induced ESCC tumorigenicity was mediated by CNIH2. Taken together, CPSF3 promotes ESCC progression by upregulating CNIH2 expression through loss of miR-125a-5p-mediated CNIH2 repression through alternative splicing and polyadenylation of the CNIH2 mRNA 3'UTR.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; Department of Clinical Research Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China.
| | - Dongchen Liu
- Department of Clinical Research Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, No.22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Wenting Lin
- Department of Pathology, Shantou University Medical College, No.22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Lan Hu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Shuqin Chen
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Chuangzhen Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
7
|
Rodrigo-Faus M, Vincelle-Nieto A, Vidal N, Puente J, Saiz-Pardo M, Lopez-Garcia A, Mendiburu-Eliçabe M, Palao N, Baquero C, Linzoain-Agos P, Cuesta AM, Qu HQ, Hakonarson H, Musteanu M, Reyes-Palomares A, Porras A, Bragado P, Gutierrez-Uzquiza A. CRISPR/Cas9 screenings unearth protein arginine methyltransferase 7 as a novel essential gene in prostate cancer metastasis. Cancer Lett 2024; 588:216776. [PMID: 38432581 DOI: 10.1016/j.canlet.2024.216776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.
Collapse
Affiliation(s)
- Maria Rodrigo-Faus
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Africa Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense Univeristy of Madrid, Madrid, Spain
| | - Natalia Vidal
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Javier Puente
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Melchor Saiz-Pardo
- Department of Medical Oncology, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), CIBERONC, Madrid, Spain
| | - Alejandra Lopez-Garcia
- Experimental Oncology, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Nerea Palao
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Paula Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Angel M Cuesta
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Monica Musteanu
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Experimental Oncology, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain; Cancer and Obesity Group, Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense Univeristy of Madrid, Madrid, Spain
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain; Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
8
|
Zhang LM, Chen L, Zhao YF, Duan WM, Zhong LM, Liu MW. Identification of key potassium channel genes of temporal lobe epilepsy by bioinformatics analyses and experimental verification. Front Neurol 2023; 14:1175007. [PMID: 37483435 PMCID: PMC10361730 DOI: 10.3389/fneur.2023.1175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein-protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.
Collapse
Affiliation(s)
- Lin-ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Yi-fei Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Wei-mei Duan
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lian-mei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Han C, Deng Y, Yang B, Hu P, Hu B, Wang T, Liu J, Xia Q, Liu X. Identification of a novel senescence-associated signature to predict biochemical recurrence and immune microenvironment for prostate cancer. Front Immunol 2023; 14:1126902. [PMID: 36891298 PMCID: PMC9986540 DOI: 10.3389/fimmu.2023.1126902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Background Prostate cancer (PCa) is an age-associated malignancy with high morbidity and mortality rate, posing a severe threat to public health. Cellular senescence, a specialized cell cycle arrest form, results in the secretion of various inflammatory mediators. In recent studies, senescence has shown an essential role in tumorigenesis and tumor development, yet the extensive effects of senescence in PCa have not been systematically investigated. Here, we aimed to develop a feasible senescence-associated prognosis model for early identification and appropriate management in patients with PCa. Method The RNA sequence results and clinical information available from The Cancer Genome Atlas (TCGA) and a list of experimentally validated senescence-related genes (SRGs) from the CellAge database were first obtained. Then, a senescence-risk signature related with prognosis was constructed using univariate Cox and LASSO regression analysis. We calculated the risk score of each patient and divided them into high-risk and low-risk groups in terms of the median value. Furthermore, two datasets (GSE70770 and GSE46602) were used to assess the effects of the risk model. A nomogram was built by integrating the risk score and clinical characteristics, which was further verified using ROC curves and calibrations. Finally, we compared the differences in the tumor microenvironment (TME) landscape, drug susceptibility, and the functional enrichment among the different risk groups. Results We established a unique prognostic signature in PCa patients based on eight SRGs, including CENPA, ADCK5, FOXM1, TFAP4, MAPK, LGALS3, BAG3, and NOX4, and validated well prognosis-predictive power in independent datasets. The risk model was associated with age and TNM staging, and the calibration chart presented a high consistency in nomogram prediction. Additionally, the prognostic signature could serve as an independent prediction factor due to its high accuracy. Notably, we found that the risk score was positively associated with tumor mutation burden (TMB) and immune checkpoint, whereas negatively correlated with tumor immune dysfunction and exclusion (TIDE), suggesting that these patients with risk scores were more sensitive to immunotherapy. Drug susceptibility analysis revealed differences in the responses to general drugs (docetaxel, cyclophosphamide, 5-Fluorouracil, cisplatin, paclitaxel, and vincristine) were yielded between the two risk groups. Conclusion Identifying the SRG-score signature may become a promising method for predicting the prognosis of patients with PCa and tailoring appropriate treatment strategies.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|