1
|
Zhao Y, Cui R, Du R, Song C, Xie F, Ren L, Li J. Platelet-Derived Microvesicles Mediate Cardiomyocyte Ferroptosis by Transferring ACSL1 During Acute Myocardial Infarction. Mol Biotechnol 2025; 67:790-804. [PMID: 38466505 DOI: 10.1007/s12033-024-01094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/21/2024] [Indexed: 03/13/2024]
Abstract
Acute myocardial infarction (AMI) is one of the critical health conditions often caused by the rupture of unstable coronary artery plaque, triggering a series of events, such as platelet activation, thrombus formation, coronary artery blockage, lasted severe ischemia, and hypoxia in cardiomyocytes, and culminating in cell death. Platelet-derived microvesicles (PMVs) act as intermediates for cellular communication. Nevertheless, the role of PMVs in myocardial infarction remains unclear. Initially, AMI-related messenger ribose nucleic acid (mRNA) and micro RNA (miRNA) datasets from the Gene Expression Omnibus (GEO) database were analyzed, specifically focusing on the expressed genes associated with Ferroptosis. Further, a miRNA-mRNA regulatory network specific to AMI was constructed. Then, the effect of PMVs on cardiomyocyte survival was further confirmed through in vitro experiments. High ACSL1 expression was observed in the platelets of AMI patients. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that ACSL1, located in the mitochondria, played a key role in the PPAR signaling pathway. The elevated ACSL1 expression in a co-culture model of PMVs and AC16 cardiomyocytes significantly increased the AC16 cell Ferroptosis. Further, we validated that the platelet ACSL1 expression could be regulated by hsa-miR-449a. Together, these findings suggested that platelet ACSL1 could trigger myocardial cell death via PMV transport. In addition, this research provided a theoretical framework for attenuating myocardial cell Ferroptosis in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Rui Cui
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Ran Du
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Chunmei Song
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lin Ren
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Chen Z, Liu T, Yuan H, Sun H, Liu S, Zhang S, Liu L, Jiang S, Tang Y, Liu Z. Bioinformatics integration reveals key genes associated with mitophagy in myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2024; 24:183. [PMID: 38539069 PMCID: PMC10967080 DOI: 10.1186/s12872-024-03834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 11/14/2024] Open
Abstract
BACKGROUND Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.
Collapse
Affiliation(s)
- Zhian Chen
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Tianying Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Hao Yuan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Han Sun
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Sitong Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuai Zhang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Li Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuang Jiang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Yong Tang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| | - Zhi Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| |
Collapse
|
3
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
4
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
5
|
Xie Y, Zhang H, Huang T. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction. Bioengineered 2022; 13:4939-4950. [PMID: 35156527 PMCID: PMC8973584 DOI: 10.1080/21655979.2022.2037365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute myocardial infarction (AMI) is the one of the main cause of death worldwide. Exosomes carry important information about intercellular communication and could be diagnostic marker for many diseases. Here, we aimed to find potential key proteins for the early diagnosis of AMI. A label free proteomics strategy was used to identify the differentially expressed proteins (DEPs) of AMI patients’ plasma exosome. By bioinformatics analysis and enzyme-linked immunosorbent assay to validate the candidate proteins. Compared to healthy control plasma exosome, we totally identified 72 differentially expressed proteins (DEPs) in AMI patients. Also, we found that complement and coagulation cascades was activated by KEGG analysis and GSEA. PLG, C8B and F2 were selected as candidate molecules for further study, and then validated another 40 plasma samples using enzyme-linked immunosorbent assay. Finally, we found that the expression levels of these three proteins (PLG, C8B and F2) were significantly higher than those of healthy controls (P < 0.05). ROC analysis revealed that PLG, C8B and F2 had potential value for AMI early diagnosis. In conclusion, our study identified three potential biomarkers for AMI diagnosis. But there remains a need to further study the mechanism of the biomarkers.
Collapse
Affiliation(s)
| | | | - Tieqiu Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|