1
|
Luo Z, Sun Y, Cai S, Liu H, Zhao C, Xu X, Xu A, Zhou H, Yang C, Gu X, Ai X. Treatment of Bleomycin-induced Pulmonary Fibrosis by Intratracheal Instillation Administration of Ellagic Acid-Loaded Chitosan Nanoparticles. AAPS PharmSciTech 2025; 26:94. [PMID: 40140157 DOI: 10.1208/s12249-025-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a rare and serious chronic interstitial lung disease that may endanger the lives of patients. The median survival time of patients with idiopathic pulmonary fibrosis is short, and the mortality rate is higher than that of many types of cancer. At present, pirfenidone (PFD) and nintedanib (NDNB) have been approved by FDA for IPF, but they can only delay the process of pulmonary fibrosis and cannot cure the disease. Therefore, it is urgent to develop other drugs with the effect of improving pulmonary fibrosis. Ellagic acid (EA) can inhibit the Wnt-signaling pathway and has an effect in treating pulmonary fibrosis induced by bleomycin (BLM) in mice. However, its solubility is poor, resulting in its low bioavailability and limited therapeutic benefits, so its clinical application has been limited. Herein, based on the characteristics of nano-drug lung delivery system, chitosan (CS) was selected as the carrier, and ellagic acid-loaded chitosan nanoparticles (EA-CS-NPs) were prepared by ionic gelation method. The EE% and DL% of prepared EA-CS-NPs was 73.73 ± 4.52% and 6.23 ± 1.09%, the particle size was 119.6 ± 5.51 nm (PDI = 0.234 ± 0.017), the zeta potential was 29.833 ± 0.503 mV. The morphology of the nanoparticles was observed by TEM microscope, which was round, uniform dispersion, indicating that the preparation process is stable and feasible. The toxicity experiment showed that EA-CS-NPs maintained 80% cell viability, significantly higher than that of the NDNB group, indicating lower toxicity and better inhibitory effects on TGF-β1-stimulated MLg and NIH-3T3 cells. Wound healing assay results showed that the inhibitory effect of EA-CS-NPs on cell migration was more pronounced than that of EA in the same amount of EA-containing drugs. Drug uptake experiments revealed that EA-CS-NPs significantly enhanced drug uptake in MLg and NIH-3T3 cells. In vivo, Cy7-CS-NPs exhibited higher fluorescence intensity in rat lungs compared to Cy7 solution, indicating better lung retention. The in vivo efficacy test showed that compared with the EA group, EA-CS-NPs could better reduce the area of pulmonary fibrosis and collagen deposition, improve lung function, and have a longer retention time in the lung. In summary, our results revealed that EA-CS-NPs may be a good choice for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhilin Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Yao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Shihao Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Hongting Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Conglu Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Xiang Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China.
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China.
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin City, 300350, China.
| |
Collapse
|
2
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Górski P, Białas AJ, Piotrowski WJ. Aging Lung: Molecular Drivers and Impact on Respiratory Diseases-A Narrative Clinical Review. Antioxidants (Basel) 2024; 13:1480. [PMID: 39765809 PMCID: PMC11673154 DOI: 10.3390/antiox13121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction. The review highlights parallels between lung aging and pathophysiological changes in respiratory diseases, emphasizing the role of cellular senescence in disease onset and progression. Despite promising research into modulating aging pathways with interventions like caloric restriction, mTOR inhibitors, and SIRT1 activators, clinical evidence for efficacy in reversing or preventing age-related lung diseases remains limited. Understanding the interplay between aging-related mechanisms and environmental factors, such as smoking and pollution, is critical for developing targeted therapies. This review underscores the need for future studies focusing on therapeutic strategies to mitigate aging's detrimental effects on lung health and improve outcomes for patients with chronic respiratory conditions.
Collapse
Affiliation(s)
- Paweł Górski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| | - Adam J. Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| |
Collapse
|
4
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Enzel D, Kriventsov M, Sataieva T, Malygina V. Cellular and Molecular Genetic Mechanisms of Lung Fibrosis Development and the Role of Vitamin D: A Review. Int J Mol Sci 2024; 25:8946. [PMID: 39201632 PMCID: PMC11355055 DOI: 10.3390/ijms25168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-β/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.
Collapse
Affiliation(s)
| | | | - Tatiana Sataieva
- Medical Institute Named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenina Boulevard 5/7, 295051 Simferopol, Russia; (D.E.); (M.K.); (V.M.)
| | | |
Collapse
|
6
|
Sebastiani M, Manfredi A, Croci S, Faverio P, Cassone G, Vacchi C, Salvarani C, Luppi F. Rheumatoid arthritis extra-articular lung disease: new insights on pathogenesis and experimental drugs. Expert Opin Investig Drugs 2024; 33:815-827. [PMID: 38967534 DOI: 10.1080/13543784.2024.2376567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Pulmonary involvement is one of the most common extra-articular manifestations of rheumatoid arthritis (RA), a systemic inflammatory disease characterized by joint swelling and tenderness. All lung compartments can be interested in the course of RA, including parenchyma, airways, and, more rarely, pleura and vasculature. AREAS COVERED The aim of this paper is to review the main RA lung manifestations, focusing on pathogenesis, clinical and therapeutic issues of RA-related interstitial lung disease (ILD). Despite an increasing number of studies in the last years, pathogenesis of RA-ILD remains largely debated and the treatment of RA patients with lung involvement is still challenging in these patients. EXPERT OPINION Management of RA-ILD is largely based on expert-opinion. Due to the broad clinical manifestations, including both joints and pulmonary involvement, multidisciplinary discussion, including rheumatologist and pulmonologist, is essential, not only for diagnosis, but also to evaluate the best therapeutic approach and follow-up. In fact, the coexistence of different lung manifestations may influence the treatment response and safety. The identification of biomarkers and risk-factors for an early identification of RA patients at risk of developing ILD remains a need that still needs to be fulfilled, and that will require further investigation in the next years.
Collapse
Affiliation(s)
- Marco Sebastiani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Rheumatology Unit, AUSL Piacenza, Piacenza, Italy
| | - Andreina Manfredi
- Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paola Faverio
- Respiratory Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulia Cassone
- Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Vacchi
- Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Reggio Emilia, Italy
- Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Luppi
- Respiratory Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Song X, Fu X, Niu S, Wang P, Qi J, Shi S, Chang H, Bai W. Exploring the effects of Saorilao-4 on the gut microbiota of pulmonary fibrosis model rats based on 16S rRNA sequencing. J Appl Microbiol 2024; 135:lxae178. [PMID: 39020259 DOI: 10.1093/jambio/lxae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
AIMS Pulmonary fibrosis (PF) is a progressive and incurable lung disease for which treatment options are limited. Here, we aimed to conduct an exploratory study on the effects of the Mongolian medicine Saorilao-4 (SRL) on the gut microbiota structure, species abundance, and diversity of a rat PF model as well as the mechanisms underlying such effects. METHODS AND RESULTS Rat fecal samples were analyzed using 16S rRNA sequencing technology. Bioinformatic and correlation analyses were performed on microbiota data to determine significant associations. SRL substantially attenuated the adverse effects exerted by PF on the structure and diversity of gut microbiota while regulating its alpha and beta diversities. Linear discriminant analysis effect size enabled the identification of 62 differentially abundant microbial taxa. Gut microbiota abundance analysis revealed that SRL significantly increased the relative abundance of bacterial phyla such as Firmicutes and Bacteroidetes. Moreover, SRL increased the proportion of beneficial bacteria, such as Lactobacillus and Bifidobacteriales, decreased the proportion of pathogenic bacteria, such as Rikenellaceae, and balanced the gut microbiota by regulating metabolic pathways. CONCLUSIONS SRL may attenuate PF by regulating gut microbiota. This exploratory study establishes the groundwork for investigating the metagenomics of PF.
Collapse
Affiliation(s)
- Xinni Song
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Xinyue Fu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Shufang Niu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Peng Wang
- The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| | - Jun Qi
- The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Songli Shi
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Hong Chang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Wanfu Bai
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
8
|
D'Agnano V, Mariniello DF, Pagliaro R, Far MS, Schiattarella A, Scialò F, Stella G, Matera MG, Cazzola M, Bianco A, Perrotta F. Sirtuins and Cellular Senescence in Patients with Idiopathic Pulmonary Fibrosis and Systemic Autoimmune Disorders. Drugs 2024; 84:491-501. [PMID: 38630364 PMCID: PMC11189987 DOI: 10.1007/s40265-024-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/22/2024]
Abstract
The sirtuin family is a heterogeneous group of proteins that play a critical role in many cellular activities. Several degenerative diseases have recently been linked to aberrant sirtuin expression and activity because of the involvement of sirtuins in maintaining cell longevity and their putative antiaging function. Idiopathic pulmonary fibrosis and progressive pulmonary fibrosis associated with systemic autoimmune disorders are severe diseases characterized by premature and accelerated exhaustion and failure of alveolar type II cells combined with aberrant activation of fibroblast proliferative pathways leading to dramatic destruction of lung architecture. The mechanisms underlying alveolar type II cell exhaustion in these disorders are not fully understood. In this review, we have focused on the role of sirtuins in the pathogenesis of idiopathic and secondary pulmonary fibrosis and their potential as biomarkers in the diagnosis and management of fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Vito D'Agnano
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Mehrdad Savabi Far
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Giulia Stella
- Unit of Respiratory System Diseases, Department of Medical Sciences and Infectious Diseases, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
9
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Mari YM, Fraix MP, Agrawal DK. Pulmonary Fibrosis and Diabetes Mellitus: Two coins with the same face. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:53-70. [PMID: 38576768 PMCID: PMC10994216 DOI: 10.26502/aimr.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) constitutes a long-term disease with a complex pathophysiology composed of multiple molecular actors that lead to the deposition of extracellular matrix, the loss of pulmonary function and ultimately the patient's death. Despite the approval of pirfenidone and nintedanib for the treatment of the disease, lung transplant is the only long-term solution to fully recover the respiratory capacity and gain quality of life. One of the risk factors for the development of IPF is the pre-existing condition of diabetes mellitus. Both, IPF and diabetes mellitus, share similar pathological damage mechanisms, including inflammation, endoplasmic reticulum stress, mitochondrial failure, oxidative stress, senescence and signaling from glycated proteins through receptors. In this critical review article, we provide information about this interrelationship, examining molecular mediators that play an essential role in both diseases and identify targets of interest for the development of potential drugs. We review the findings of clinical trials examining the progression of IPF and how novel molecules may be used to stop this process. The results highlight the importance of early detection and addressing multiple therapeutic targets simultaneously to achieve better therapeutic efficacy and potentially reverse lung fibrosis.
Collapse
Affiliation(s)
- Yssel Mendoza Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Marcel P Fraix
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| |
Collapse
|
11
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. Aging Cell 2023; 22:e14024. [PMID: 37961030 PMCID: PMC10726832 DOI: 10.1111/acel.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high-throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. For the purpose of identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Our analysis identified lymphoid enhancer binding factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with idiopathic pulmonary fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dysregulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
| | - Khaled Sayed
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Electrical & Computer Engineering and Computer ScienceUniversity of New HavenWest HavenConnecticutUSA
| | - Maria G. Kapetanaki
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| | - William Dion
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Saad Irfan
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eleanor Valenzi
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Robert A. Lafyatis
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Bokai Zhu
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Panayiotis V. Benos
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Tseng CC, Sung YW, Chen KY, Wang PY, Yen CY, Sung WY, Wu CC, Ou TT, Tsai WC, Liao WT, Chen CJ, Lee SC, Chang SJ, Yen JH. The Role of Macrophages in Connective Tissue Disease-Associated Interstitial Lung Disease: Focusing on Molecular Mechanisms and Potential Treatment Strategies. Int J Mol Sci 2023; 24:11995. [PMID: 37569370 PMCID: PMC10419312 DOI: 10.3390/ijms241511995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pin-Yi Wang
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Yi Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|