1
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Abd El-Lateef HM, Ali LS, Qahl SH, Binjawhar DN, Fayad E, Alghamdi MA, Altalhi SA, Al-Salmi FA, Shabana ES, Radwan KH, Youssef I, Shaaban S, Rashwan HM, El-Sawah SG. Therapeutic effect of N, N-Diphenyl-1,4-phenylenediamine and adipose-derived stem cells coadministration on diabetic cardiomyopathy in type 1 diabetes mellitus-rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:647-657. [PMID: 38594572 DOI: 10.1002/jez.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Type 1 diabetes stem-cell-based treatment approach is among the leading therapeutic strategies for treating cardiac damage owing to the stem cells' regeneration capabilities. Mesenchymal stem cells derived from adipose tissue (AD-MSCs) have shown great potential in treating diabetic cardiomyopathy (DCM). Herein, we explored the antioxidant-supporting role of N, N'-diphenyl-1,4-phenylenediamine (DPPD) in enhancing the MSCs' therapeutic role in alleviating DCM complications in heart tissues of type 1 diabetic rats. Six male albinos Wistar rat groups have been designed into the control group, DPPD (250 mg/kg, i.p.) group, diabetic-untreated group, and three diabetic rat groups treated with either AD-MSCs (1 × 106 cell/rat, i.v.) or DPPD or both. Interestingly, all three treated diabetic groups exhibited a significant decrease in serum glucose, HbA1c, heart dysfunction markers (lactate dehydrogenase and CK-MP) levels, and lipid profile fractions (except for HDL-C), as well as some cardiac oxidative stress (OS) levels (MDA, AGEs, XO, and ROS). On the contrary, serum insulin, C-peptide, and various cardiac antioxidant levels (GSH, GST, CAT, SOD, TAC, and HO-1), beside viable cardiac cells (G0/G1%), were markedly elevated compared with the diabetic untreated group. In support of these findings, the histological assay reflected a marked enhancement in the cardiac tissues of all diabetic-treated groups, with obvious excellency of the AD-MSCs + DPPD diabetic-treated group. Such results strongly suggested the great therapeutic potentiality of either DPPD or AD-MSCs single injection in enhancing the cardiac function of diabetic rats, with a great noted enhancement superiority of DPPD and AD-MSCs coadministration.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Lashin S Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Physiology Department, Faculty of Medicine, Mansoura University, Mansours, Egypt
| | - Safa H Qahl
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dalal N Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha A Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sarah A Altalhi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fawziah A Al-Salmi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - El Shaimaa Shabana
- Fellow of Biochemistry, Genetic Unit, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kholoud H Radwan
- Department of Biochemistry, Horus University in Egypt HUE, Damietta, Egypt
| | - Ibrahim Youssef
- Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
- Neuroradiology and Neuro-intervention Section, Department of Radiology, UTSW Medical Center, Dallas, USA
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Hanan M Rashwan
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Shady G El-Sawah
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| |
Collapse
|
3
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
5
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
6
|
Khan S, Ahmad SS, Kamal MA. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell. Endocr Metab Immune Disord Drug Targets 2020; 21:268-281. [PMID: 32735531 DOI: 10.2174/1871530320666200731174724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus characterized by gradually failing heart with detrimental cardiac remodelings, such as fibrosis and diastolic and systolic dysfunction, which is not directly attributable to coronary artery disease. Insulin resistance and resulting hyperglycemia is the main trigger involved in the initiation of diabetic cardiomyopathy. There is a constellation of many pathophysiological events, such as lipotoxicity, oxidative stress, inflammation, inappropriate activation of the renin-angiotensin-aldosterone system, dysfunctional immune modulation promoting increased rate of cardiac cell injury, apoptosis, and necrosis, which ultimately culminates into interstitial fibrosis, cardiac stiffness, diastolic dysfunction, initially, and later systolic dysfunction too. These events finally lead to clinical heart failure of DCM. Herein, The pathophysiology of DCM is briefly discussed. Furthermore, potential therapeutic strategies currently used for DCM are also briefly mentioned.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan, China
| | - Syed S Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep 2019; 20:2051-2062. [PMID: 31322242 DOI: 10.3892/mmr.2019.10473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes mellitus has become a major public health concern due to lifestyle alterations. Moreover, the complications associated with diabetes mellitus deeply influence the quality of life of patients. Diabetic cardiomyopathy (DC) is a type of diabetes mellitus complication characterized by functional and structural damage in the myocardium but not accompanied by coronary arterial disease. Currently, diagnosing and preventing DC is still a challenge for physicians due to its atypical symptoms. For this reason, it is necessary to summarize the current knowledge on DC, especially in regards to the underlying molecular mechanisms toward the goal of developing useful diagnostic approaches and effective drugs based on these mechanisms. There exist several review articles which have focused on these points, but there still remains a lot to learn from published studies. In this review, the features, diagnosis and molecular mechanisms of DC are reviewed. Furthermore, potential therapeutic and prophylactic drugs are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming Yu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Zhang Y, Chen Z, Wang T, Yang J, Li R, Wang S, Liu J, Ye Z. Treatment of diabetes mellitus-induced erectile dysfunction using endothelial progenitor cells genetically modified with human telomerase reverse transcriptase. Oncotarget 2018; 7:39302-39315. [PMID: 27283992 PMCID: PMC5129934 DOI: 10.18632/oncotarget.9909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
The efficacy of treatments for diabetes mellitus-induced erectile dysfunction (DMED) is quite poor, and stem cell therapy is emerging as a useful method. In this study, we used endothelial progenitor cells (EPCs) overexpressing human telomerase reverse transcriptase (hTERT) for the treatment of DMED. Rat EPCs were transfected with hTERT (EPCs-hTERT). EPCs-hTERT secreted more growth factors and demonstrated enhanced proliferation and resistance to oxidative stress. Twenty-four male DMED rats were subjected to four treatments: DMED (DMED group), EPCs (EPCs group), EPCs transduced with control lentivirus (EPC-control group) and EPCs-hTERT (EPCs-hTERT group). A group of healthy rats were used as the normal control group. The erectile function in the EPCs-hTERT group was markedly increased compared with the EPCs and EPCs-control groups. The EPCs-hTERT group exhibited more growth factors, smooth muscle content and retained stem cells in penile tissues. The degree of apoptosis and collagen/smooth muscle ratio in penile tissues of the EPCs-hTERT group was considerably reduced. Endothelial nitric oxide synthase (eNOS) expression increased significantly in the EPCs-hTERT group. Taken together, these data showed that the enhanced paracrine effect, resistance to oxidative stress and proliferation of EPCs-hTERT may contribute to the improvements of erectile function in DMED rats.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Kawamura M, Paulsen MJ, Goldstone AB, Shudo Y, Wang H, Steele AN, Stapleton LM, Edwards BB, Eskandari A, Truong VN, Jaatinen KJ, Ingason AB, Miyagawa S, Sawa Y, Woo YJ. Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovasc Diabetol 2017; 16:142. [PMID: 29096622 PMCID: PMC5668999 DOI: 10.1186/s12933-017-0625-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. Methods Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). Results SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. Conclusions Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.
Collapse
Affiliation(s)
- Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Bryan B Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Vi N Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Arnar B Ingason
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Japan
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Chen TS, Liou SY, Kuo CH, Pan LF, Yeh YL, Liou J, Padma VV, Yao CH, Kuo WW, Huang CY. Green tea epigallocatechin gallate enhances cardiac function restoration through survival signaling expression in diabetes mellitus rats with autologous adipose tissue-derived stem cells. J Appl Physiol (1985) 2017; 123:1081-1091. [PMID: 28546469 DOI: 10.1152/japplphysiol.00471.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
The present study tests a hypothesis that cardioprotective effects mediated by autologous adipose-derived stem cells (ADSC) in rats afflicted with insulin-dependent diabetes mellitus (IDDM) may be synergistically enhanced by oral treatment with green tea epigallocatechin gallate (EGCG). Wistar rats were divided into sham, DM, DM+ADSC (autologous transplanted 1 × 106 cells per rat), and DM+ADSC+E (E, green tea oral administration EGCG). Heart tissues were isolated from all rats, and investigations were performed after 2-mo treatment. In the sham, DM, and DM+ADSC groups, we found that DM induced cardiac dysfunction (sham and DM) and autologous ADSC transplantation could partially recover cardiac functions (DM and DM+ADSC) in DM rats. Compared with DM+ADSC, significant improvement in cardiac functions can be observed in DM+ADSC+E in echocardiographic data, histological observations, and even cellular protein expression. Oral green tea EGCG administration and autologous ADSC transplantation show synergistically beneficial effects on diabetic cardiac myopathy in DM rats. NEW & NOTEWORTHY Cardiomyopathy can be induced in rats with diabetes mellitus (DM). Heart function can be restored in DM rats with adipose-derived stem cell treatment. Oral epigallocatechin gallate (EGCG) administration synergistically enhances cardiac function in DM rats with stem cell treatment. The EGCG and stem cell treatment cross-effect occurs via survival protein expression.
Collapse
Affiliation(s)
- Tung-Sheng Chen
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Show-Yih Liou
- Formosan Blood Purification Foundation, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Armed Force Taichung General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Jeffery Liou
- Comprehensive Weight Management Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; and
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Abstract
INTRODUCTION In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Sing Si
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Richard G Ohye
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
12
|
Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med 2017; 32:404-421. [PMID: 28415836 PMCID: PMC5432803 DOI: 10.3904/kjim.2016.208] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
The global burden of diabetes mellitus and its related complications are currently increasing. Diabetes mellitus affects the heart through various mechanisms including microvascular impairment, metabolic disturbance, subcellular component abnormalities, cardiac autonomic dysfunction, and a maladaptive immune response. Eventually, diabetes mellitus can cause functional and structural changes in the myocardium without coronary artery disease, a disorder known as diabetic cardiomyopathy (DCM). There are many diagnostic tools and management options for DCM, although it is difficult to detect its development and effectively prevent its progression. In this review, we summarize the current research regarding the pathophysiology and pathogenesis of DCM. Moreover, we discuss emerging diagnostic evaluation methods and treatment strategies for DCM, which may help our understanding of its underlying mechanisms and facilitate the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Correspondence to Jaetaek Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea Tel: +82-2-6299-1397 Fax: +82-2-6299-1390 E-mail:
| |
Collapse
|
13
|
Ahmed LA, Rizk SM, El-Maraghy SA. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats. Biochem Pharmacol 2017; 138:193-204. [PMID: 28450224 DOI: 10.1016/j.bcp.2017.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/drug effects
- Endothelial Progenitor Cells/immunology
- Endothelial Progenitor Cells/transplantation
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Flavanones/therapeutic use
- Graft Rejection/prevention & control
- Heart Ventricles/immunology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/surgery
- Lung/blood supply
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Pulmonary Artery/pathology
- Random Allocation
- Rats, Wistar
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
15
|
Zou G, Liu T, Guo L, Huang Y, Feng Y, Huang Q, Duan T. miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency. Gene 2016; 591:48-57. [PMID: 27346547 DOI: 10.1016/j.gene.2016.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
In this study, we observed a great reduction in the expression of the endogenous long noncoding RNA ROR (lncRNA-ROR) and the stem cell transcription factor Sox2, in contrast to a marked increase in miR-145 expression, during the course of in vitro induced differentiation of human amniotic epithelial stem cells (HuAECs). Bioinformatics analysis and the luciferase reporter assay revealed binding of miR-145 to specific sites in lncRNA-ROR and Sox2, silencing their expression. Overexpression of a lncRNA-ROR-specific siRNA effectively downregulated the expression levels of Sox2 and other stem cell markers in HuAECs while weakening the efficiency of HuAEC differentiation into β islet-like cells. Moreover, the in vitro response of HuAEC-derived β islet-like cells to extracellular stimuli and C-peptide release by these cells were markedly weakened in the siRNA-ROR transfection group. Furthermore, the in vivo expression of β islet-like cell biomarkers was substantially reduced in HuAECs in the siRNA-ROR transfection group, and their in vivo β islet-like cell differentiation and insulin release capacities were reduced in a streptozocin-induced diabetic rat model. The experimental results indicate that lncRNA-ROR effectively maintains Sox2 gene expression through competitive binding to miR-145, achieving pluripotency maintenance in HuAECs and regulation of their directed β islet-like cell differentiation efficiency.
Collapse
Affiliation(s)
- Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Te Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongyi Huang
- Laboratoire PROTEE, Bâtiment R, Université du Sud Toulon-Var, 83957, La Garde Cedex, France
| | - Ya Feng
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Qin Huang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| |
Collapse
|
16
|
|
17
|
Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 2015; 410:267-79. [PMID: 26359087 DOI: 10.1007/s11010-015-2560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia while down regulation of Caspase-3 gene. Eight weeks after type 1 diabetes induction, DZ preconditioned, and non-preconditioned DM-EPCs were transplanted into left ventricle of diabetic rats (at a dose of 2 × 10(6) DM-EPCs/70 μl serum free medium). After 4 weeks, DZ preconditioned DM-EPCs transplantation improved cardiac function as assessed by Millar's apparatus. There was decrease in collagen content estimated by Masson's trichrome and sirius red staining. Furthermore, reduced cell injury was observed as evidenced by decreased expression of Caspase-3 and increased expression of prosurvival genes Bcl2, VEGF, and bFGF by semi-quantitative real-time PCR. In conclusion, the present study demonstrated that DZ preconditioning enhanced EPCs survival under oxidative and hyperglycemic stress and their ability to treat DCM.
Collapse
Affiliation(s)
- Muhammad Ali
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | | | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan. .,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
18
|
Seemann I, te Poele JAM, Hoving S, Stewart FA. Mouse bone marrow-derived endothelial progenitor cells do not restore radiation-induced microvascular damage. ISRN CARDIOLOGY 2014; 2014:506348. [PMID: 25101181 PMCID: PMC4005028 DOI: 10.1155/2014/506348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 11/24/2022]
Abstract
Background. Radiotherapy is commonly used to treat breast and thoracic cancers but it also causes delayed microvascular damage and increases the risk of cardiac mortality. Endothelial cell proliferation and revascularization are crucial to restore microvasculature damage and maintain function of the irradiated heart. We have therefore examined the potential of bone marrow-derived endothelial progenitor cells (BM-derived EPCs) for restoration of radiation-induced microvascular damage. Material & Methods. 16 Gy was delivered to the heart of adult C57BL/6 mice. Mice were injected with BM-derived EPCs, obtained from Eng(+/+) or Eng(+/-) mice, 16 weeks and 28 weeks after irradiation. Morphological damage was evaluated at 40 weeks in transplanted mice, relative to radiation only and age-matched controls. Results. Cardiac irradiation decreased microvascular density and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor). Microvascular damage was not diminished by treatment with BM-derived EPCs. However, BM-derived EPCs from both Eng(+/+) and Eng(+/-) mice diminished radiation-induced collagen deposition. Conclusion. Treatment with BM-derived EPCs did not restore radiation-induced microvascular damage but it did inhibit fibrosis. Endoglin deficiency did not impair this process.
Collapse
Affiliation(s)
- Ingar Seemann
- Division of Biological Stress Response (H3), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Johannes A. M. te Poele
- Division of Biological Stress Response (H3), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Saske Hoving
- Division of Biological Stress Response (H3), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Fiona A. Stewart
- Division of Biological Stress Response (H3), The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
19
|
Joshi M, Kotha SR, Malireddy S, Selvaraju V, Satoskar AR, Palesty A, McFadden DW, Parinandi NL, Maulik N. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Biochem 2013; 386:233-49. [PMID: 24307101 DOI: 10.1007/s11010-013-1861-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.
Collapse
Affiliation(s)
- Mandip Joshi
- Department of Surgery, University of Connecticut Health Center, Farmington Avenue, Farmington, CT, 06032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diabetes 2013; 4:177-189. [PMID: 24147202 PMCID: PMC3797883 DOI: 10.4239/wjd.v4.i5.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/02/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023] Open
Abstract
Diabetes affects every organ in the body and cardiovascular disease accounts for two-thirds of the mortality in the diabetic population. Diabetes-related heart disease occurs in the form of coronary artery disease (CAD), cardiac autonomic neuropathy or diabetic cardiomyopathy (DbCM). The prevalence of cardiac failure is high in the diabetic population and DbCM is a common but underestimated cause of heart failure in diabetes. The pathogenesis of diabetic cardiomyopathy is yet to be clearly defined. Hyperglycemia, dyslipidemia and inflammation are thought to play key roles in the generation of reactive oxygen or nitrogen species which are in turn implicated. The myocardial interstitium undergoes alterations resulting in abnormal contractile function noted in DbCM. In the early stages of the disease diastolic dysfunction is the only abnormality, but systolic dysfunction supervenes in the later stages with impaired left ventricular ejection fraction. Transmitral Doppler echocardiography is usually used to assess diastolic dysfunction, but tissue Doppler Imaging and Cardiac Magnetic Resonance Imaging are being increasingly used recently for early detection of DbCM. The management of DbCM involves improvement in lifestyle, control of glucose and lipid abnormalities, and treatment of hypertension and CAD, if present. The role of vasoactive drugs and antioxidants is being explored. This review discusses the pathophysiology, diagnostic evaluation and management options of DbCM.
Collapse
|
21
|
Chiang CH, Huang PH, Leu HB, Hsu CY, Wang KF, Chen JW, Lin SJ. Decreased circulating endothelial progenitor cell levels in patients with heart failure with preserved ejection fraction. Cardiology 2013; 126:191-201. [PMID: 24051936 DOI: 10.1159/000351973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/06/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The purpose of this study was to explore the relationship between endothelial progenitor cell (EPC) levels, heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). METHODS A total of 44 HFpEF patients, 40 HFrEF patients and 69 age-, gender- and comorbidity-matched controls were enrolled after evaluating their clinical manifestations and echocardiography findings. Flow cytometry with quantification of three EPC markers in peripheral blood samples was used to assess the number of circulating EPCs. RESULTS HFpEF and HFrEF patients had significantly decreased circulating EPC levels compared to controls. Among heart failure patients, patients with New York Heart Association functional class (FC) IV had fewer circulating EPCs compared to those with FC II and FC III (p = 0.053). A simple linear regression analysis of data showed that high sensitivity C-reactive protein, left ventricular ejection fraction, left atrium diameter and the ratio of medial early filling to early diastolic mitral annular velocity all correlated with the EPC count. In multivariate Cox regression analyses, both HFpEF and HFrEF were found to be independent predictors of a decreased EPC number. CONCLUSIONS HFpEF and HFrEF patients have decreased circulating EPC numbers, which is an indication of impaired endothelial turnover.
Collapse
Affiliation(s)
- Chia-Hung Chiang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao CT, Wang M, Siu CW, Hou YL, Wang T, Tse HF, Yiu KH. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovasc Diabetol 2012; 11:147. [PMID: 23217199 PMCID: PMC3537556 DOI: 10.1186/1475-2840-11-147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) is nonetheless unknown. METHODS Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV) systolic function by 2-dimensional (2D) speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR) + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD). RESULTS The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P < 0.05) than those with preserved longitudinal strain. When compared with those with preserved circumferential strain, patients with an impaired circumferential strain had a lower number of CD34+ EPCs (2.63 ± 1.80% vs. 3.87 ± 2.10%, P < 0.01) and SOD level (0.13 ± 0.06U/ml vs. 0.20 ± 0.08U/ml, P < 0.01). Patients with an impaired radial strain nonetheless had a lower number of CD34+ EPCs (2.62 ± 2.08% vs. 3.69 ± 1.99%, P < 0.05). Multivariate analysis demonstrated that only impaired global circumferential strain remained significantly associated with CD34 + EPCs and SOD. CONCLUSIONS LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.
Collapse
Affiliation(s)
- Chun Ting Zhao
- Shan Dong University School of Medicine, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen J, Chen J, Chen S, Zhang C, Zhang L, Xiao X, Das A, Zhao Y, Yuan B, Morris M, Zhao B, Chen Y. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice. PLoS One 2012. [PMID: 23185548 PMCID: PMC3503762 DOI: 10.1371/journal.pone.0050105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the role of stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis in brain and endothelial progenitor cells (EPCs), and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) followed with high glucose (HG) treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS) inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2) The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3) Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation) and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4) Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.
Collapse
Affiliation(s)
- Ji Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Jianying Chen
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Liangqing Zhang
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Avik Das
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Yuhui Zhao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Bin Yuan
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Mariana Morris
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Bin Zhao
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Clinical Research Center and Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Qiu J, Li W, Feng S, Wang M, He Z. Transplantation of bone marrow-derived endothelial progenitor cells attenuates cerebral ischemia and reperfusion injury by inhibiting neuronal apoptosis, oxidative stress and nuclear factor-κB expression. Int J Mol Med 2012; 31:91-8. [PMID: 23151725 DOI: 10.3892/ijmm.2012.1180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/26/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the neuroprotective effects of bone marrow-derived endothelial progenitor cell (EPC) transplantation against cerebral ischemia/reperfusion (I/R) injury in rats and to delineate the possible underlying mechanisms. Cerebral I/R injury was established by 2 h of middle cerebral artery occlusion (MCAO) followed by reperfusion for 24 h. EPCs were isolated from bone marrow of the donor rats, grown in conditioned medium, and characterized by flow cytometry analysis of several surface markers. Labeled EPCs (106 cells) were infused into rats at the onset of reperfusion and 12 h after reperfusion via the tail vein. Infarct volume was assessed at 24 h after reperfusion by using triphenyltetrazolium chloride (TTC) staining. The expression of cell apoptosis-related proteins including Bcl-2 and Bax was determined by western blot analysis, and the activity of caspase-3 was also measured. We evaluated the activities of some antioxidative enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), the non-enzymatic scavenger glutathione (GSH) and detected the content of malondialdehyde (MDA) in the ischemic penumbra. Moreover, the expression of nuclear factor-κB (NF-κB) in the ischemic regions of rats was examined by immunohistochemical staining and western blot analysis. The results showed that transplantation of EPCs significantly reduced the cerebral infarct volume, decreased caspase-3 activity, upregulated Bcl-2 expression, and downregulated the expression of Bax and NF-κB. Furthermore, reduced levels of MDA, significantly elevated activities of SOD and GSH as well as GSH-PX were also found in I/R rats transplanted with EPCs. Collectively, our data demonstrated that transplantation of bone marrow-derived EPCs exerts potent neuroprotective functions against cerebral I/R injury in rats, and the protective effects may be associated with its antioxidative and anti-apoptotic properties.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | | | | | | | | |
Collapse
|