1
|
Ferreira DT, Shen BQ, Mwirigi JM, Shiers S, Sankaranarayanan I, Kotamarti M, Inturi NN, Mazhar K, Ubogu EE, Thomas G, Lalli T, Wukich D, Price TJ. Deciphering the molecular landscape of human peripheral nerves: implications for diabetic peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599167. [PMID: 38915676 PMCID: PMC11195245 DOI: 10.1101/2024.06.15.599167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.
Collapse
Affiliation(s)
- Diana Tavares Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Miriam Kotamarti
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| | - Eroboghene E Ubogu
- Department of Neurology, Division of Neuromuscular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geneva Thomas
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Trapper Lalli
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dane Wukich
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies; University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
3
|
Jiang Y, Du Y, Su R, Wei L, Gao P, Zhang J, Zhou X, Zhu S, Zhang H, Chen Y, Fang C, Wang S, Yu J, Ding W, Feng L. Analysis, validation, and discussion of key genes in placenta of patients with gestational diabetes mellitus. Exp Biol Med (Maywood) 2023; 248:1806-1817. [PMID: 37873933 PMCID: PMC10792417 DOI: 10.1177/15353702231199077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/27/2023] [Indexed: 10/25/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication during pregnancy, which can have harmful health consequences for both the mother and the fetus. Given the placenta's crucial role as an endocrine organ during pregnancy, exploring and validating key genes in the placenta hold significant potential in the realm of GDM prevention and treatment. In this study, differentially expressed genes (DEGs) were identified from two databases, GSE70493 and PRJNA646212, and verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in placenta tissues. DEGs expression was detected in normal or high-glucose-treated HTR8/SVneo cells. We also investigated the relationship between DEGs and glucose levels in GDM patients. By selecting the intersection of the two databases, we screened 20 DEGs, which were validated in GDM patients. We observed an up-regulation of SLAMF, ALDH1A2, and CHI3L2, and a down-regulation of HLA-E, MYH11, HLA-DRB5, ITGAX, GZMB, NAIP, TMEM74B, RANBP3L, PAEP, WT-1, and CEP170. We conducted further investigations into the expression of DEGs in HTR8/SVneo cells exposed to high glucose, revealing a significant upregulation in the expression of SERPINA3, while the expressions of HLA-E, BCL6, NAIP, PAEP, MUC16, WT-1, and CEP170 were decreased. Moreover, some DEGs were confirmed to have a positive or negative correlation with blood glucose levels of GDM patients through correlation analysis. The identified DEGs are anticipated to exert potential implications in the prevention and management of GDM, thereby offering potential benefits for improving pregnancy outcomes and long-term prognosis of fetuses among individuals affected by GDM.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lijie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiting Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenyun Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Matboli M, Hassan MK, Ali MA, Mansour MT, Elsayed W, Atteya R, Aly HS, Meteini ME, Elghazaly H, El-Khamisy S, Agwa SHA. Impact of circ-0000221 in the Pathogenesis of Hepatocellular via Modulation of miR-661-PTPN11 mRNA Axis. Pharmaceutics 2022; 14:pharmaceutics14010138. [PMID: 35057034 PMCID: PMC8778063 DOI: 10.3390/pharmaceutics14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in Egypt. A deep understanding of the molecular events occurring in HCC can facilitate the development of novel diagnostic and/or therapeutic approaches. In the present study, we describe a novel axis of hsa-circ-0000221–miR-661–PTPN11 mRNA proposed by in silico and in vitro analysis and its role in HCC pathogenesis. We observe a reduction in the expression levels of hsa-circ-0000221 and PTPN11 mRNA in HCC patients’ sera tested compared with control subjects. The reduction occurs with a concomitant increase in the expression of miR-661. Furthermore, the introduction of exogenous hsa-circ-0000221 into Hep-G2 or SNU449 cell lines results in detectable decrease in cellular viability and an increase in apoptotic manifestations that is associated with G1 accumulation and CCDN1 overexpression. Altogether, these findings indicate the tumor-suppressive role of hsa-circ-0000221 in HCC, which acts through miR-661 inhibition, along with a subsequent PTPN11 mRNA increase, where PTPN11 is known to inhibit cell proliferation in many forms of cancer. Our study encourages further investigation of the role of circRNAs in cancer and their potential use as molecular biomarkers.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
- Correspondence: (M.M.); (S.H.A.A.)
| | - Mohmed Kamal Hassan
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
- Biotechnology Program, Biology Division, Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Mahmoud A. Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Mohamed Tarek Mansour
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Waheba Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Hebatallah Said Aly
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
| | - Mahmoud El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo 11382, Egypt;
| | - Hesham Elghazaly
- Oncology Department, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt;
| | - Sherif El-Khamisy
- The Healthy Lifespan Institute, The Institute of Neuroscience, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK;
- The Institute of Cancer Therapeutics, West Yorkshire BD7 1DP, UK
| | - Sara H. A. Agwa
- Clinical pathology and Molecular Genomics Unit, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt
- Correspondence: (M.M.); (S.H.A.A.)
| |
Collapse
|
5
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
6
|
Zinc binding regulates amyloid-like aggregation of GAPR-1. Biosci Rep 2019; 39:BSR20182345. [PMID: 30700571 PMCID: PMC6900432 DOI: 10.1042/bsr20182345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure–function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103. Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain.
Collapse
|
7
|
Gu Y, Qiu ZL, Liu DZ, Sun GL, Guan YC, Hei ZQ, Li X. Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice. Biomed Rep 2018; 9:291-304. [PMID: 30233781 PMCID: PMC6142038 DOI: 10.3892/br.2018.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). The pathogenic mechanisms of DPN and the therapeutic interventions required may be distinct between type 1 (T1) and type 2 (T2) DM. However, the molecular mechanisms underlying the pathogenesis of DPN in both types of diabetes remain unclear. The aim of the current study was to identify the changes in genes and pathways associated with DPN in sciatic nerves of T1- and T2DM mice using bioinformatics analysis. The microarray profiles of sciatic nerves of T1DM (GSE11343) and T2DM (GSE27382) mouse models were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in each. DEGs in the two types of DM (with fold change ≥2 and P<0.05) were identified with BRB-ArrayTools. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins and visualized using Cytoscape. Compared with control samples, 623 and 1,890 DEGs were identified in sciatic nerves of T1- and T2DM mice, respectively. Of these, 75 genes were coordinately dysregulated in the sciatic nerves of both models. Many DEGs unique to T1DM mice were localized to the nucleoplasm and were associated with regulation of transcription processes, while many unique to T2DM mice were localized at cell junctions and were associated with ion transport. In addition, certain DEGs may be associated with the different treatment strategies used for the two types of DM. This analysis provides insight into the functional gene sets and pathways operating in sciatic nerves in T1- and T2DM. The results should improve understanding of the molecular mechanisms underlying the pathophysiology of DPN, and provide information for the development of therapeutic strategies for DPN specific to each type of DM.
Collapse
Affiliation(s)
- Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhuo-Lin Qiu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - De-Zhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guo-Liang Sun
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying-Chao Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
8
|
Kaminski HJ, Himuro K, Alshaikh J, Gong B, Cheng G, Kusner LL. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats. Front Physiol 2016; 7:524. [PMID: 27891095 PMCID: PMC5102901 DOI: 10.3389/fphys.2016.00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 01/14/2023] Open
Abstract
The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, George Washington University Washington, DC, USA
| | - Keiichi Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Jumana Alshaikh
- Department of Neurology, George Washington University Washington, DC, USA
| | - Bendi Gong
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic Cleveland, OH, USA
| | - Linda L Kusner
- Pharmacology and Physiology, George Washington University Washington, DC, USA
| |
Collapse
|