1
|
Brennan J, Lu ML, Kang Y. A New Model of Esophageal Cancers by Using a Detergent-Free Decellularized Matrix in a Perfusion Bioreactor. Bioengineering (Basel) 2023; 10:96. [PMID: 36671668 PMCID: PMC9854977 DOI: 10.3390/bioengineering10010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The lack of physiologically relevant human esophageal cancer models has as a result that many esophageal cancer studies are encountering major bottleneck challenges in achieving breakthrough progress. To address the issue, here we engineered a 3D esophageal tumor tissue model using a biomimetic decellularized esophageal matrix in a customized bioreactor. To obtain a biomimetic esophageal matrix, we developed a detergent-free, rapid decellularization method to decellularize porcine esophagus. We characterized the decellularized esophageal matrix (DEM) and utilized the DEM for the growth of esophageal cancer cell KYSE30 in well plates and the bioreactor. We then analyzed the expression of cancer-related markers of KYSE30 cells and compared them with formalin-fixed, paraffin-embedded (FFPE) esophageal squamous cell carcinoma (ESCC) tissue biospecimens. Our results show that the detergent-free decellularization method preserved the esophageal matrix components and effectively removed cell nucleus. KYSE30 cancer cells proliferated well on and inside the DEM. KYSE30 cells cultured on the DEM in the dynamic bioreactor show different cancer marker expressions than those in the static well plate, and also share some similarities to the FFPE-ESCC biospecimens. These findings built a foundation with potential for further study of esophageal cancer behavior in a biomimetic microenvironment using this new esophageal cancer model.
Collapse
Affiliation(s)
- Jordan Brennan
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael L. Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Palmerini MG, Nottola SA, Tunjung WAS, Kadowaki A, Bianchi S, Cecconi S, Sato E, Macchiarelli G. EGF-FSH supplementation reduces apoptosis of pig granulosa cells in co-culture with cumulus-oocyte complexes. Biochem Biophys Res Commun 2016; 481:159-164. [PMID: 27816448 DOI: 10.1016/j.bbrc.2016.10.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
In cattle breeding, co-culture with granulosa cells (GCs) is one of the strategies to improve oocyte maturation and fertilization potential, but yields are still suboptimal due to GC apoptosis. We previously set up an in vitro co-culture system of cumulus-oocyte-complexes (COCs) anchored to GC multilayers adhering to the basal lamina (COCGs), in which GC apoptosis was inhibited by FSH supplementation. Here, we assessed the antiapoptotic effect of EGF (5 ng/ml-EGF5) alone or in synergism to FSH (50mU/ml-FSH50) on pig COCGs. COCG morphology, apoptotic rate, procaspase-8 and-9 expression levels and surface ultrastructure were determined. Results showed an increased % of apoptotic GCs in control and EGF5 (≈80%) respect to sampling (≈3%) and caspase-8 and -9 activation. In contrast, apoptotic cells were significantly reduced by FSH50 (≈35%) supplementation, with inactive Procaspase-8 and -9 highly expressed. The pro-survival effect of FSH was strengthened by EGF (EGF5+FSH50), as evidenced by a significant reduction of apoptosis (≈15%) and high expression levels of Procaspase-8 and -9. Ultrastructural analysis revealed that GC multilayers were characterized by round-to-ovoid cells connected each other and to the basal lamina by cytoplasmic projections. Microvilli shortening/thickening/reduction, cytoplasmic projection rarefaction, blebbing of apoptotic bodies and degenerating/atresic GCs were observed in control and EGF5 groups. FSH50 induced the formation of an abundant mucinous matrix, due to granulosa expansion. Blebs and atresic areas were rarely observed. In EGF5+FSH50 group, GCs were well-preserved, richly covered by microvilli and connected by numerous cytoplasmic projections. Degenerative phenomena were rarely observed. In conclusion, EGF in synergism with FSH seems to better counteract GC apoptosis in a co-culture of pig GC multilayers.
Collapse
Affiliation(s)
- Maria Grazia Palmerini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Stefania Annarita Nottola
- Dept. of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Woro Anidito Sri Tunjung
- Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada Indonesia, Indonesia; Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Akane Kadowaki
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Serena Bianchi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandra Cecconi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eimei Sato
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Guido Macchiarelli
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|