1
|
Jiang X, Jiang Y, An D, Jiang X, Zhou S, Liu Y, Tian R, Li Z, Zhao X, Xiang T, Ji P, Yang Y. Methylated tumor suppressor gene SCARA5 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma. Epigenomics 2023; 15:635-650. [PMID: 37554122 DOI: 10.2217/epi-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background: SCARA5 may play an important role in nasopharyngeal carcinoma. Materials & methods: PCR and immunohistochemistry were used to detect the expression and promoter methylation of SCARA5. Cell proliferation assays, spheroid culture, flow cytometry analysis, Transwell assays and xenotransplantation tests were utilized to determine the functional effects of SCARA5. RNA-sequencing, western blotting, immunofluorescence and dual-luciferase reporter assays were used to assess SCARA5-mediated outcomes. Results: SCARA5 was downregulated by promoter methylation. Overexpression of SCARA5 inhibited cell migration, invasion and proliferation. SCARA5 enhanced nasopharyngeal carcinoma cell sensitivity to chemotherapy with cisplatin and 5-fluorouracil. SCARA5 drives tumor apoptosis by downregulating HSPA2. Conclusion: SCARA5 may be a useful clinical marker in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Deqiang An
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaocong Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shitong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otorhinolaryngology Head & Neck Surgery, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, China
| | - Yijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Rui Tian
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuoqing Li
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xunping Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, No. 7 Shangqingsi Road, Yuzhong District, Chongqing, 400015, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
2
|
Exploration of the Simple and Green Synthetic Route of Hollow Titanium Dioxide Microspheres for In-Depth Analysis of Phosphopeptides in the Serum of Nasopharyngeal Carcinoma Patients. Chromatographia 2022. [DOI: 10.1007/s10337-022-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Yao M, Fu L, Liu X, Zheng D. In-Silico Multi-Omics Analysis of the Functional Significance of Calmodulin 1 in Multiple Cancers. Front Genet 2022; 12:793508. [PMID: 35096010 PMCID: PMC8790318 DOI: 10.3389/fgene.2021.793508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Aberrant activation of calmodulin 1 (CALM1) has been reported in human cancers. However, comprehensive understanding of the role of CALM1 in most cancer types has remained unclear. We systematically analyzed the expression landscape, DNA methylation, gene alteration, immune infiltration, clinical relevance, and molecular pathway of CALM1 in multiple cancers using various online tools, including The Cancer Genome Atlas, cBioPortal and the Human Protein Atlas databases. Kaplan–Meier and receiver operating characteristic (ROC) curves were plotted to explore the prognostic and diagnostic potential of CALM1 expression. Multivariate analyses were used to evaluate whether the CALM1 expression could be an independent risk factor. A nomogram predicting the overall survival (OS) of patients was developed, evaluated, and compared with the traditional Tumor-Node-Metastasis (TNM) model using decision curve analysis. R language was employed as the main tool for analysis and visualization. Results revealed CALM1 to be highly expressed in most cancers, its expression being regulated by DNA methylation in multiple cancers. CALM1 had a low mutation frequency (within 3%) and was associated with immune infiltration. We observed a substantial positive correlation between CALM1 expression and macrophage and neutrophil infiltration levels in multiple cancers. Different mutational forms of CALM1 hampered immune cell infiltration. Additionally, CALM1 expression had high diagnostic and prognostic potential. Multivariate analyses revealed CALM1 expression to be an independent risk factor for OS. Therefore, our newly developed nomogram had a higher clinical value than the TNM model. The concordance index, calibration curve, and time-dependent ROC curves of the nomogram exhibited excellent performance in terms of predicting the survival rate of patients. Moreover, elevated CALM1 expression contributes to the activation of cancer-related pathways, such as the WNT and MAPK pathways. Overall, our findings improved our understanding of the function of CALM1 in human cancers.
Collapse
Affiliation(s)
- Maolin Yao
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lanyi Fu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xuedong Liu
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dong Zheng
- Laboratory of Genetics and Molecular Biology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
5
|
Zhang SQ, Pan SM, Liang SX, Han YS, Chen HB, Li JC. Research status and prospects of biomarkers for nasopharyngeal carcinoma in the era of high‑throughput omics (Review). Int J Oncol 2021; 58:9. [PMID: 33649830 PMCID: PMC7910009 DOI: 10.3892/ijo.2021.5188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
As a malignant tumor type, nasopharyngeal carcinoma (NPC) is characterized by distinct geographical, ethnic and genetic differences; presenting a major threat to human health in many countries, especially in Southern China. At present, no accurate and effective methods are available for the early diagnosis, efficacious evaluation or prognosis prediction for NPC. As such, a large number of patients have locoregionally advanced NPC at the time of initial diagnosis. Many patients show toxic reactions to overtreatment and have risks of cancer recurrence and distant metastasis owing to insufficient treatment. To solve these clinical problems, high‑throughput '‑omics' technologies are being used to screen and identify specific molecular biomarkers for NPC. Because of the lack of comprehensive descriptions regarding NPC biomarkers, the present study summarized the research progress that has been made in recent years to discover NPC biomarkers, highlighting the existing problems that require exploration. In view of the lack of authoritative reports at present, study design factors that affect the screening of biomarkers are also discussed here and prospects for future research are proposed to provide references for follow‑up studies of NPC biomarkers.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Su-Ming Pan
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Si-Xian Liang
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
- Correspondence to: Professor Ji-Cheng Li, Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, 133 Huimin South Road, Wujiang, Shaoguan, Guangdong 512025, P.R. China, E-mail:
| |
Collapse
|
6
|
Zeng Y, Wang S, Feng M, Shao Z, Yuan J, Shen Z, Jie W. [Quantitative proteomics and differential signal enrichment in nasopharyngeal carcinoma cells with or without SETD2 gene knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1191-1199. [PMID: 31801714 DOI: 10.12122/j.issn.1673-4254.2019.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the effects of alterations in the expressions of methyltransferase SETD2 on protein expression profiles in human nasopharyngeal carcinoma (NPC) cells and enrich the differential signaling pathways. METHODS The total protein was extracted from SETD2-knockout cell line CNE1SETD2-KO and the wild-type cell line CNE1WT, and the differentially expressed proteins were screened by tandem mass tag (TMT) labeled protein quantification technique and tandem mass spectrometry. GO analysis was used to annotate and enrich the differentially expressed proteins, and the KEGG database was used to enrich and analyze the pathways of the differential proteins. RESULTS With a fold change (FC)≥1.2 and P < 0.05 as the screening standard, 2049 differentially expressed proteins were identified in CNE1SETD2-KO cells, among which 904 were up-regulated and 1145 were down-regulated. GO functional annotation results indicated that SETD2 knockout caused characteristic changes in multiple biological processes (cell processes and regulation, cell movement, metabolic processes, and biosynthesis of cellular components), molecular functions (catalytic activity and molecular binding, transcription factor activity), and cellular components (cell membrane, organelle, macromolecular complex). KEGG analysis showed that the differentially expressed proteins were involved in an array of signaling pathways closely related to tumors, including MAPK, PI3K-Akt, Ras, Rap1, mTOR, Hippo, HIF-1, Wnt, AMPK, FoxO, ErbB, P53 and JAK-STAT. CONCLUSIONS SETD2 knockout significantly changes the protein expression characteristics of NPC cells and affects a number of signal pathways closely related to tumors. The results provide evidence for investigation of the pathogenesis and therapeutic target screening of NPC.
Collapse
Affiliation(s)
- Yumei Zeng
- Department of Pathology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Sisi Wang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Muyin Feng
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhongming Shao
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Jianling Yuan
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| | - Wei Jie
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
8
|
Hong F, Li Y, Ni H, Li J. Downregulation of ribophorin II suppresses tumor growth, migration, and invasion of nasopharyngeal carcinoma. Onco Targets Ther 2018; 11:3485-3494. [PMID: 29942140 PMCID: PMC6007195 DOI: 10.2147/ott.s158355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background It has been reported that ribophorin II (RPN2) expression is increased in many cancers, but the role of RPN2 in nasopharyngeal carcinoma (NPC) remains unclear. Patients and methods This study found that the expression of RPN2 is increased dramatically in NPC tissues of patients compared with that in the adjacent normal tissues. This study attempted at understanding the effect of siRNA-RPN2 treatment on the migration and invasion of NPC cell lines CNE2 and HNE1. Results RT-PCR and Western blotting showed that RPN2 was highly expressed in CNE2 and HNE1 cells. siRNA-RPN2 treatment significantly inhibited cell viability at 24 and 48 h compared with the control group. Results of the transwell assay showed that, compared to the control groups, migration and invasion of the cells treated with siRNA-RPN2 decreased markedly. In addition, compared to the control groups, caspase-3, caspase-9, and E-cadherin expression levels increased and MMP 2 expression decreased significantly in the siRNA-RPN2-treated group. Phosphorylation of AKT and PI3K was also inhibited after siRNA-RPN2 treatment. Conclusion siRNA-RPN2 can effectively inhibit the invasion and migration of human NPC cells via AKT/PI3K signaling. This can serve as a novel strategy for NPC treatment.
Collapse
Affiliation(s)
- Feilong Hong
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yong Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Haifeng Ni
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
9
|
Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M, Vafaee R, Rostami-Nejad M. Nasopharyngeal Carcinoma Protein Interaction Mapping Analysis via Proteomic Approaches. Asian Pac J Cancer Prev 2018; 19:845-851. [PMID: 29582644 PMCID: PMC5980865 DOI: 10.22034/apjcp.2018.19.3.845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), although not very common in many parts of the world, is a major concern in
some countries, including Iran. Molecular studies are very helpful to provide essential information regarding underlying
carcinogenetic mechanisms. Here, considering NPC proteomic approaches, established biomarkers were designated for
protein-protein interaction network construction and analysis with corresponding plug-ins. A network of reported protein
markers was constructed and topological and biological process features were investigated. Centrality analysis showed
that JUN, CALM1, HSB1, and SOD1 are more important than other differentially expressed proteins in an interacting
pattern. What is more, by extending the network, Tp53, PRDM10, AKT1, ALB, HSP90AA1, and EGFR achieved the
highest values for NPC network strength. It can be concluded that these proteins as well as their contributing processes,
particularly in a second network, may be important for NPC onset and development. Targeting these candidate proteins
may allow novel treatment approaches following appropriate validation.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Hearing Disorders Research Center and Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|