1
|
Banimohammad M, Khalafi P, Gholamin D, Bangaleh Z, Akhtar N, Solomon AD, Prabhakar PK, Sanami S, Prakash A, Pazoki-Toroudi H. Exploring recent advances in signaling pathways and hallmarks of uveal melanoma: a comprehensive review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002306. [PMID: 40177537 PMCID: PMC11964777 DOI: 10.37349/etat.2025.1002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The purpose of this review was to provide a comprehensive review of the latest insights on the pathogenesis of uveal melanoma (UM) and its intracellular pathways. This article covers the epidemiology of UM, racial predispositions, cytogenetic and chromosomal alterations, gene mutations, key defective pathways, and their underlying mechanisms, as well as the application of hallmarks of cancer to UM. A key knowledge gap remains in identifying the most effective targeted therapy and determining the central pathway linking multiple signaling networks. UM is a malignant tumor arising from uveal melanocytes, predominantly affecting the choroid, with both genetic and epigenetic contributors. Key cytogenetic alterations include monosomy 3, chromosome 6p gain, chromosome 1p loss, and chromosome 8q gain. The most important UM-related signaling pathways are RAS/MAPK, PI3K/Akt/mTOR, Hippo-YAP, retinoblastoma (Rb), and p53 pathways. In the RAS/MAPK pathway, GNAQ/GNA11 mutations occur which account for more than 80% of UM cases. The PI3K/Akt/mTOR pathway promotes cyclin D1 overexpression and MDM2 upregulation, leading to p53 pathway inhibition. GNAQ/GNA11 mutations activate YAP via the Trio-RhoGTPase/RhoA/Rac1 signaling circuit in the Hippo-YAP pathway. Rb pathway dysregulation results from cyclin D1 overexpression or cyclin-dependent kinase inhibitor (CDKI) inactivation. In the p53 pathway, UM is characterized by p53 mutations, MDM2 overexpression, and Bcl-2 deregulation. Eventually, the ARF-MDM2 axis serves as a critical link between the RAS and p53 pathways. Hallmarks of cancer, such as evasion of growth suppression and self-sufficiency in growth signals, are also evident in UM. Genetic and epigenetic alterations, including NSB1, MDM2 and CCND1 amplification, and BAP1 mutations, play pivotal roles in UM pathobiology. Thus, UM exhibits a multifactorial pathology. By consolidating key mechanisms underlying UM pathogenesis, this review provides a comprehensive perspective on the involved pathways, offering insights that may facilitate the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Majid Banimohammad
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parsa Khalafi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Danial Gholamin
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zahra Bangaleh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pranav Kumar Prabhakar
- School of Allied Medical Sciences, Lovely Professional University, Phagwara 144411, India
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, India
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
2
|
Shi J, Guo Y, Wang H, Xiao Y, Liu W, Lyu L. The ubiquitin-proteasome system in melanin metabolism. J Cosmet Dermatol 2022; 21:6661-6668. [PMID: 36207998 DOI: 10.1111/jocd.15433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is a highly conserved way of regulating intracellular protein balance. UPS mediates proteolysis and disruption of variation or misfolding, while finely regulating proteins involved in differentiation and other biological processes. AIMS The aim of this review is to systematically introduce UPS as a key regulator of melanin metabolism. METHODS Systematic search and retrospective review were performed on the published data. RESULTS Melanocyte-inducing transcription factor (MITF) is a substrate of the ubiquitin ligase VCHL1 and acts as a transcription factor to regulate the expression of key enzymes in melanin synthesis such as tyrosinase (TYR). The rate-limiting enzyme TYR is modified by the ubiquitin ligase Hrd1 during melanosynthesis. Melanin itself is also regulated by multiple ubiquitin ligases including Fbp1 and Vhl. By regulating the ubiquitination modification to target each link of melanin synthesis, it plays an important role in correcting the disorder of melanin metabolism. A number of chemical agents have been proven to inhibit the activity of ubiquitin ligase. CONCLUSIONS Drugs targeting E3 ligase and deubiquitinating enzymes have great potential in the treatment of melanin metabolism disorders.
Collapse
Affiliation(s)
- Jingpei Shi
- Yunnan Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanfang Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hanying Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Yun Xiao
- Department of Dermatology, The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weimin Liu
- Department of Dermatology, the Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Argania Spinosa Fruit Shell Extract-Induced Melanogenesis via cAMP Signaling Pathway Activation. Int J Mol Sci 2020; 21:ijms21072539. [PMID: 32268492 PMCID: PMC7177760 DOI: 10.3390/ijms21072539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022] Open
Abstract
We have previously reported that argan oil and argan press-cake from the kernels of Argania spinosa have an anti-melanogenesis effect. Here, the effect of argan fruit shell ethanol extract (AFSEE) on melanogenesis in B16F10 cells was determined, and the mechanism underlying its effect was elucidated. The proliferation of AFSEE-treated B16F10 cells was evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the melanin content was quantified using a spectrophotometric method. The expression of melanogenesis-related proteins was determined by Western blot and real-time PCR, while global gene expression was determined using a DNA microarray. In vitro analysis results showed that the melanin content of B16F10 cells was significantly increased by AFSEE, without cytotoxicity, by increasing the melanogenic enzyme tyrosinase (TRY), tyrosinase related-protein 1 (TRP1), and dopachrome tautomerase (DCT) protein and mRNA expression, as well as upregulating microphthalmia-associated transcription factor (MITF) expression through mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38, and the cyclic adenosine monophosphate (cAMP) signaling pathway, as indicated by the microarray analysis results. AFSEE’s melanogenesis promotion effect is primarily attributed to its polyphenolic components. In conclusion, AFSEE promotes melanogenesis in B16F10 cells by upregulating the expression of the melanogenic enzymes through the cAMP–MITF signaling pathway.AFSEE may be used as a cosmetics product component to promote melanogenesis, or as a therapeutic against hypopigmentation disorders.
Collapse
|
4
|
Krajnc B, Bontempo L, Luis Araus J, Giovanetti M, Alegria C, Lauteri M, Augusti A, Atti N, Smeti S, Taous F, Amenzou NE, Podgornik M, Camin F, Reis P, Máguas C, Bučar Miklavčič M, Ogrinc N. Selective Methods to Investigate Authenticity and Geographical Origin of Mediterranean Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bor Krajnc
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Italy
| | - Jose Luis Araus
- Section of Plant Physiology, Universitat de Barcelona, Barcelona, AGROTECNIO, Lleida, Spain
| | - Manuela Giovanetti
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carla Alegria
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marco Lauteri
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Angela Augusti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Naziha Atti
- Laboratoire de Production Animale et Fourragère, Institut National de Recherche Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| | - Samir Smeti
- Laboratoire de Production Animale et Fourragère, Institut National de Recherche Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| | - Fouad Taous
- Centre National de L’énergie, Des Sciences Et Techniques Nucleaires, Rabat, Morocco
| | - Nour Eddine Amenzou
- Centre National de L’énergie, Des Sciences Et Techniques Nucleaires, Rabat, Morocco
| | - Maja Podgornik
- Science and Research Centre Koper, Institute for Oliveculture, Koper, Slovenia
| | - Federica Camin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Italy
| | - Pedro Reis
- Sistemas agrários e florestais e sanidade vegetal, Instituto Nacional de Investigação Agrária E Veterinária, Oeiras, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | | | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|