1
|
Bradová M, Costes‐Martineau V, Laco J, Vaněček T, Grossmann P, Němcová J, Pavlovský Z, Skálová A, Michal M. Sinonasal adenosquamous carcinomas arising in seromucinous hamartoma or respiratory epithelial adenomatoid hamartoma with atypical features: Report of five detailed clinicopathological and molecular characterisation of rare entity. Histopathology 2025; 86:585-602. [PMID: 39564605 PMCID: PMC11791733 DOI: 10.1111/his.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
AIMS Sinonasal adenosquamous carcinoma (ASC) is a rare tumour classified as a variant of squamous cell carcinoma, exhibiting both squamous and glandular differentiation. ASC has a poorer prognosis compared to sinonasal mucoepidermoid carcinoma (MEC), another uncommon tumour in this region. ASC is believed to originate from metaplastic squamous epithelium, though it may also arise from respiratory epithelium in respiratory epithelial adenomatoid hamartoma (REAH) or seromucinous glands in seromucinous hamartoma (SH). METHODS AND RESULTS Five cases of sinonasal ASC were retrieved from our registry. Initially, they were classified as sinonasal MEC (n = 3), ASC (n = 2), and carcinoma ex REAH (n = 1). All cases showed adenosquamous malignant proliferation beneath the surface respiratory epithelium with occasional squamous metaplasia, except for one case that showed dysplasia. The respiratory epithelium exhibited an inverted growth pattern consistent with REAH/SH, and displayed atypical sinonasal glands (ASGSH) arising within seromucinous hamartoma. Next-generation sequencing (NGS) revealed multiple pathogenic mutations in two cases, and in case 4 GGA2::PRKCB and EYA2::SERINC3 gene fusions. One case was positive for high-risk HPV. None of the cases exhibited CRTC1/3::MAML2 gene fusion. CONCLUSION The connection between ASGSH and ASC has not been described in the literature. There is a growing need for additional studies on the morphological, immunohistochemical, and genetic aspects of these tumours. SH/REAH may serve as precursor lesions in the progression of atypical sinonasal glands to malignancy, and their role in tumour development deserves further investigation.
Collapse
Affiliation(s)
- Martina Bradová
- Department of Pathology, Faculty of Medicine in PlzenCharles UniversityPlzenCzech Republic
- Bioptic Laboratory LtdPlzenCzech Republic
| | | | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine in Hradec Kralove and University Hospital Hradec KraloveCharles UniversityPragueCzech Republic
| | | | | | | | - Zdeněk Pavlovský
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Alena Skálová
- Department of Pathology, Faculty of Medicine in PlzenCharles UniversityPlzenCzech Republic
- Bioptic Laboratory LtdPlzenCzech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in PlzenCharles UniversityPlzenCzech Republic
- Bioptic Laboratory LtdPlzenCzech Republic
| |
Collapse
|
2
|
Wei T, Lin R, Lu Y, Jin DY, Zhang J, Sham MH. Protein phosphatase EYA1 regulates the dephosphorylation and turnover of BCL2L12 to promote glioma development. Int J Biol Sci 2025; 21:1081-1096. [PMID: 39897043 PMCID: PMC11781168 DOI: 10.7150/ijbs.99619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
Glioma is the most prevalent and deadly type of intracranial tumor. Understanding the molecular drivers and their underlying mechanisms in glioma development is urgently needed. EYA1 is a unique protein phosphatase that drives gliomagenesis, yet its substrates remain largely uncharacterized. In this study, we identify BCL2L12 (BCL2-like 12), a critical oncoprotein in glioma, as a novel substrate of EYA1 phosphatase in glioma cells. Our findings demonstrate that EYA1 dephosphorylates BCL2L12 at threonine-33 (T33), which in turn protects BCL2L12 from ubiquitination and subsequent proteasomal degradation. Our results indicate that BCL2L12 partially mediates the oncogenic roles of EYA1 in promoting glioma cell proliferation, highlighting the significance of EYA1's dephosphorylation of BCL2L12 in tumor progression. Moreover, we validate a positive correlation between EYA1 and BCL2L12 protein levels in glioma patient samples. In summary, our study reveals how EYA1-BCL2L12 interaction functions in glioma development, implicating EYA1 as a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Tianzi Wei
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Risheng Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Mai Har Sham
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
3
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
4
|
Rossi S, Barresi S, Colafati GS, Genovese S, Tancredi C, Costabile V, Patrizi S, Giovannoni I, Asioli S, Poliani PL, Gardiman MP, Cardoni A, Del Baldo G, Antonelli M, Gianno F, Piccirilli E, Catino G, Martucci L, Quacquarini D, Toni F, Melchionda F, Viscardi E, Zucchelli M, Dal Pos S, Gatti E, Liserre R, Schiavello E, Diomedi-Camassei F, Carai A, Mastronuzzi A, Gessi M, Giannini C, Novelli A, Onetti Muda A, Miele E, Alesi V, Alaggio R. PATZ1-Rearranged Tumors of the Central Nervous System: Characterization of a Pediatric Series of Seven Cases. Mod Pathol 2024; 37:100387. [PMID: 38007157 DOI: 10.1016/j.modpat.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.
Collapse
Affiliation(s)
- Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chantal Tancredi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentino Costabile
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section-Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Paola Gardiman
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University Hospital of Padua, Padua, Italy
| | - Antonello Cardoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manila Antonelli
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Francesca Gianno
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eleonora Piccirilli
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Licia Martucci
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Denise Quacquarini
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Toni
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fraia Melchionda
- SSD Oncoematologia Pediatrica, IRCCS AOU Policlinico S.Orsola, Bologna, Italy
| | - Elisabetta Viscardi
- Department of Pediatrics, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Mino Zucchelli
- Paediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sandro Dal Pos
- Department of Radiology, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Enza Gatti
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Andrea Carai
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Pathology Division, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica S.Cuore, Rome, Italy
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section-Alma Mater Studiorum - University of Bologna, Bologna, Italy; Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Jones S, Matos B, Dennison S, Fardilha M, Howl J. Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins. Pharmaceutics 2023; 15:2018. [PMID: 37631231 PMCID: PMC10458859 DOI: 10.3390/pharmaceutics15082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation.
Collapse
Affiliation(s)
- Sarah Jones
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - Sarah Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - John Howl
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
6
|
Liu T, Nie J, Zhang X, Deng X, Fu B. The value of EYA1/3/4 in clear cell renal cell carcinoma: a study from multiple databases. Sci Rep 2023; 13:7442. [PMID: 37156847 PMCID: PMC10167363 DOI: 10.1038/s41598-023-34324-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
There is evidence from multiple studies that dysregulation of the Eyes Absent (EYA) protein plays multiple roles in many cancers. Despite this, little is known about the prognostic significance of the EYAs family in clear cell renal cell carcinoma (ccRCC). We systematically analyzed the value of EYAs in Clear Cell Renal Cell Carcinoma. Our analysis included examining transcriptional levels, mutations, methylated modifications, co-expression, protein-protein interactions (PPIs), immune infiltration, single-cell sequencing, drug sensitivity, and prognostic values. We based our analysis on data from several databases, including the Cancer Genome Atlas database (TCGA), the Gene Expression Omnibus database (GEO), UALCAN, TIMER, Gene Expression Profiling Interactive Analysis (GEPIA), STRING, cBioPortal and GSCALite. In patients with ccRCC, the EYA1 gene was significantly highly expressed, while the expression of EYA2/3/4 genes showed the opposite trend. The level of expression of the EYA1/3/4 gene was significantly correlated with the prognosis and clinicopathological parameters of ccRCC patients. Univariate and multifactorial Cox regression analyses revealed EYA1/3 as an independent prognostic factor for ccRCC, establishing nomogram line plots with good predictive power. Meanwhile, the number of mutations in EYAs was also significantly correlated with poor overall survival (OS) and progression-free survival (PFS) of patients with ccRCC. Mechanistically, EYAs genes play an essential role in a wide range of biological processes such as DNA metabolism and double-strand break repair in ccRCC. The majority of EYAs members were related to the infiltration of immune cells, drug sensitivity, and methylation levels. Furthermore, our experiment confirmed that EYA1 gene expression was upregulated, and EYA2/3/4 showed low expression in ccRCC. The increased expression of EYA1 might play an important role in ccRCC oncogenesis, and the decreased expression of EYA3/4 could function as a tumor suppressor, suggesting EYA1/3/4 might serve as valuable prognostic markers and potential new therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Taobin Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jianqiang Nie
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoming Zhang
- Nanchang County People's Hospital, 199 Xiangyang Road, Liantang Town, Nanchang County, Nanchang City, 330200, Jiangxi Province, People's Republic of China.
| | - Xinxi Deng
- Department of Urology, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, Jiangxi Province, People's Republic of China.
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
7
|
Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, Ranjbar A, Hashemi M, Ertas YN, Hushmandi K, Mirzaei S, Ashrafizadeh M, Zarrabi A, Samarghandian S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2022; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefeh Mehrabi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Ehsan Ranjbar
- Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
9
|
Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN. Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 2021; 218:212685. [PMID: 34617969 PMCID: PMC8504185 DOI: 10.1084/jem.20202669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan L Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas H Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Grace Lin
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Dawoud MM, Aiad HAES, Tawfiq EAE, Al-Qalashy FSA, Eissa N, El-Rebey HS. Role of SIX1, EYA2, and E-cadherin in ovarian carcinoma. Evidence on epithelial-mesenchymal transition from an immunohistochemical study. Ann Diagn Pathol 2021; 55:151815. [PMID: 34534789 DOI: 10.1016/j.anndiagpath.2021.151815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
This study aims to investigate the expression of SIX1, EYA2, and E-cadherin in ovarian cancer (OC). It was conducted on 97 cases of surface epithelial tumors (SEOTs). Immunohistochemistry (IHC) staining for the three markers was applied to archival paraffin-embedded sections. Results of semi-quantitative scoring were statistically compared, correlated with clinic-pathologic parameters, response to therapy and with patient survival. RESULTS: There was a significant association of SIX1 expression in the intratumoral stroma (ITS) with malignant cases (P < 0.0001). There was a significant direct correlation between tumour cell expression of SIX1 and EYA2 (P = 0.03) and an inverse correlation between SIX1 and E-cadherin (P = 0.03). Additionally, there were direct correlations between SIX1 expression and larger tumour size (P = 0.05), high mitosis (P < 0.0001), and advanced FIGO stage (P = 0.06), and between EYA2 expression and LN metastasis (P = 0.02), and low apoptotic index (P = 0.007). Only SIX1 expression in ITS affected the patient survival by univariate analysis (P = 0.004). CONCLUSIONS: SIX1/EYA2 complex may have a poor prognostic role in OC. SIX1 expression in ITS may be used as a predictive marker of stromal invasion in ovarian borderline tumors and could affect patients' survival in OC. SIX1, EYA2, and E-cadherin may constitute a pathway that could be targeted to stop the progression of SEOTs.
Collapse
Affiliation(s)
| | | | | | | | - Nehad Eissa
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Menoufia University, Egypt
| | - Hala Said El-Rebey
- Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
11
|
ARHGEF3 Associated with Invasion, Metastasis, and Proliferation in Human Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3381957. [PMID: 34350290 PMCID: PMC8328732 DOI: 10.1155/2021/3381957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Background Osteosarcoma is a malignant bone tumor composed of mesenchymal cells producing osteoid and immature bone. This study is aimed at developing novel potential prognostic biomarkers and constructing a miRNA-mRNA network for progression in osteosarcoma. Method GSE70367 and GSE70414 were obtained in the Gene Expression Omnibus (GEO) database. GEO software and the GEO2R calculation method were used to analyze two gene profiles. The coexpression of differentially expressed miRNAs (DEMs) and genes (DEGs) was identified and searched for in the FunRich database for pathway and ontology analysis. Cytoscape was utilized to construct the mRNA-miRNA network. Survival analysis of identified miRNAs and mRNAs was performed by utilizing the Kaplan-Meier Plotter. Besides, expression levels of DEMs and target mRNAs were verified by performing quantitative real-time PCR (qRT-PCR) and Western blot (WB). Results Six differentially expressed microRNAs (DEMs) were identified, and 8 target genes were selected after screening. By using the KM Plotter software, miRNA-124 and ARHGEF3 were obviously associated with the overall survival of patients with osteosarcoma. Furthermore, ARHGEF3 was found downregulated in osteosarcoma cells by performing qRT-PCR and WB experiments. Results also showed that downregulated ARHGEF3 may associate with invasion, metastasis, and proliferation. Conclusions By using microarray and bioinformatics analysis, DEMs were selected, and a complete miRNA-mRNA network was constructed. ARHGEF3 may act as a therapeutic and prognostic target of osteosarcoma.
Collapse
|
12
|
Sousounis K, Bryant DM, Martinez Fernandez J, Eddy SS, Tsai SL, Gundberg GC, Han J, Courtemanche K, Levin M, Whited JL. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. eLife 2020; 9:51217. [PMID: 32142407 PMCID: PMC7093111 DOI: 10.7554/elife.51217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,The Allen Discovery Center at Tufts University, Medford, United States
| | - Donald M Bryant
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jose Martinez Fernandez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Samuel S Eddy
- Department of Orthopedic Surgery, Boston, United States
| | - Stephanie L Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Gregory C Gundberg
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,The Allen Discovery Center at Tufts University, Medford, United States
| | - Jihee Han
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Katharine Courtemanche
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Michael Levin
- The Allen Discovery Center at Tufts University, Medford, United States.,Department of Biology, Tufts University, Medford, United States
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,The Allen Discovery Center at Tufts University, Medford, United States.,The Harvard Stem Cell Institute, Cambridge, United States.,The Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
13
|
Zhang Y, Wang S, Liu Z, Yang L, Liu J, Xiu M. Increased Six1 expression in macrophages promotes hepatocellular carcinoma growth and invasion by regulating MMP-9. J Cell Mol Med 2019; 23:4523-4533. [PMID: 31044528 PMCID: PMC6584525 DOI: 10.1111/jcmm.14342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Increased Six1 expression is commonly observed in a variety of cancers and is positively correlated with cancer progression and metastasis. Nevertheless, the mechanism by which Six1 affects the development of hepatocellular carcinoma (HCC) is still unclear. A series of experiments involving cell counting kit-8, colony formation and Transwell assay was used to determine cell proliferation, migration and invasion respectively. Histological examination and immunofluorescence assay were also performed. The messenger RNA and protein expression of interesting genes were determined by real-time reverse transcription-polymerase chain reaction and western blotting respectively. We found that Six1 was up-regulated in HCC and was associated with worse histological grade and poor survival rate. Increased expression of Six1 was shown to be able to boost cell growth, invasion, migration and epithelial-mesenchymal transition (EMT), whereas silencing of Six1 suppressed these malignant phenotypes. Mechanistic investigations revealed that, in macrophages, matrix metalloproteinase 9 (MMP-9) was up-regulated by Six1. Interestingly, Six1 expression in macrophages was also able to trigger MMP-9 induction in HCC cells. Moreover, macrophage Six1 expression was able to induce interleukin-6 (IL-6) up-regulation and increase the activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells, which accounted for the elevated levels of MMP-9 and the higher invasive levels seen in HCC. Increased expression of Six1 in HCC aggravates the malignant behaviour of cancer cells, and we provide novel evidence that macrophage Six1 can stimulate cancer cell invasion by elevating MMP-9 expression.
Collapse
Affiliation(s)
- Yongyu Zhang
- Department of Interventional RadiologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Shiji Wang
- Department of Intensive Care UnitThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhongmin Liu
- Department of Intensive Care UnitThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Lewei Yang
- Department of Radiation OncologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Jian Liu
- Department of Infectious DiseasesThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Ming Xiu
- Department of Intensive Care UnitThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
14
|
Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3808432. [PMID: 31317026 PMCID: PMC6601494 DOI: 10.1155/2019/3808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
The aberrant expression of Eya2 has been observed in a wide range of cancer types. However, the clinical significance and biological effects of EYA2 in human prostate cancer remain unknown. In this study, we showed that increased levels of Eya2 protein correlated with advanced TNM stage, T stage, and a higher Gleason score. Data from the Cancer Genome Atlas (TCGA) prostate cohort consistently revealed that Eya2 mRNA was positively correlated with a higher Gleason score, higher T stage, and positive nodal metastasis in prostate cancer. Furthermore, data from the Oncomine database showed increased levels of EYA2 mRNA expression in prostate cancer tissues compared with normal tissues. Eya2 protein expression was also higher in prostate cancer cell lines compared with a normal RWPE-1 cell line. We selected LNCaP and PC-3 cell lines for plasmid overexpression and shRNA knockdown. CCK-8, colony formation, and Matrigel invasion assays demonstrated that the overexpression of Eya2 promoted proliferation, colony number, and invasion while Eya2 shRNA inhibited proliferation rate, colony formation, and invasion ability. CCK-8 and Annexin V assays showed that Eya2 reduced sensitivity to docetaxel and docetaxel-induced apoptosis while Eya2 shRNA showed the opposite effects. The overexpression of Eya2 also downregulated the cleavage of caspase3 and PARP while Eya2 depletion upregulated caspase3 and PARP cleavage. Notably, JC-1 staining demonstrated that Eya2 upregulated mitochondrial membrane potential. We further revealed that the overexpression of Eya2 upregulated Bcl-2, matrix metalloproteinase 7 (MMP7), and AKT phosphorylation. Accordingly, data from the TCGA prostate cohort indicated that EYA2 mRNA was positively correlated with the expression of Bcl-2 and MMP7. The inhibition of AKT attenuated EYA2-induced Bcl-2 upregulation. In conclusion, our data demonstrated that Eya2 was upregulated in prostate cancers. EYA2 promotes cell proliferation and invasion as well as cancer progression by regulating docetaxel sensitivity and mitochondrial membrane potential, possibly via the AKT/Bcl-2 axis.
Collapse
|
15
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
16
|
Xu H, Jiao Y, Yi M, Zhao W, Wu K. EYA2 Correlates With Clinico-Pathological Features of Breast Cancer, Promotes Tumor Proliferation, and Predicts Poor Survival. Front Oncol 2019; 9:26. [PMID: 30761270 PMCID: PMC6361843 DOI: 10.3389/fonc.2019.00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Eyes absent homolog 2 (EYA2), a transcriptional activator, is pivotal for organ development, but aberrant regulation of EYA2 has been reported in multiple human tumors. However, the role of EYA2 in breast cancer is still lack of full understanding. To explore the biological significance of EYA2 in breast cancer, we conducted data analysis on public breast cancer datasets, and performed immunohistochemistry (IHC) analysis, colony-forming unit assays, EdU assay, western blotting, and immunofluorescence (IF). Meta-analysis showed that EYA2 mRNA expression was correlated with tumor grade, the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). IHC analysis displayed that EYA2 protein abundance was inversely associated with the status of ER and PR, and enriched in triple-negative breast cancer in comparison with luminal-type tumors. Additionally, correlation analysis reflected that EYA2 mRNA was negatively correlated with luminal markers, and positively associated with markers of basal cells, epithelial-mesenchymal transition and cancer stem cells. Clone-forming assay and EdU experiment showed that EYA2 overexpression enhanced proliferation of breast cancer cells. Results from western blotting and IF displayed that overexpression of EYA2 up-regulated the protein abundance of proliferation markers. Importantly, survival analysis indicated that higher EYA2 mRNA level predicted worse overall survival, relapse-free survival and metastasis-free survival among whole enrolled breast cancer patients. Collectively, EYA2 was closely correlated with clinico-pathological characteristics, and served as a proliferation stimulator for breast cancer cells and an unfavorable prognostic element for breast cancer patients, suggesting that EYA2 is involved in the progression of breast carcinoma.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Maharjan BD, Ono R, Nosaka T. Eya2 is critical for the E2A‑HLF‑mediated immortalization of mouse hematopoietic stem/progenitor cells. Int J Oncol 2019; 54:981-990. [PMID: 30628662 DOI: 10.3892/ijo.2019.4673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/09/2018] [Indexed: 11/05/2022] Open
Abstract
The immunoglobulin enhancer‑binding factor/hepatic leukemia factor (E2A‑HLF) oncogenic fusion gene, generated by t(17;19)(q22;p13) translocation in childhood B‑cell acute lymphoblastic leukemia with a very poor prognosis, encodes a chimeric transcription factor in which the transactivation domains of E2A are fused to the DNA‑binding and dimerization domain of HLF. E2A‑HLF has been demonstrated to have an anti‑apoptotic effect. However, the molecular mechanism underlying E2A‑HLF‑mediated leukemogenesis remains unclear. The present study identified EYA transcriptional coactivator and phosphatase 2 (Eya2), the forced expression of which is known to immortalize mouse hematopoietic stem/progenitor cells (HSPCs), as a direct target molecule downstream of E2A‑HLF. E2A‑HLF‑immortalized mouse HSPCs expressed Eya2 at a high level in the aberrant self‑renewal program. Chromatin immunoprecipitation‑quantitative polymerase chain reaction and a reporter assay revealed that E2A‑HLF enhanced the Eya2 expression by binding to the promoter region containing the E2A‑HLF‑binding consensus sequence. Eya2 knockdown in E2A‑HLF‑immortalized cells resulted in reduced colony‑forming efficiency. These results suggest a critical role of Eya2 in E2A‑HLF‑mediated leukemogenesis.
Collapse
Affiliation(s)
- Bishnu Devi Maharjan
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| |
Collapse
|
18
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
19
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
20
|
Zhu X, Chen L, Lin J. miR-219a-5p represses migration and invasion of osteosarcoma cells via targeting EYA2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1004-S1010. [PMID: 30449183 DOI: 10.1080/21691401.2018.1525391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
EYA2 is the developmental transcription factor and phosphatase, playing an important role in numerous species in regulating cell death and differentiation. Recent studies showed that EYA2 is dysregulated and involved in the progression of various cancers. However, the expression and role of EYA2 in osteosarcoma remains unclear. Here, we found that EYA2 expression was evidently upregulated osteosarcoma (OS) tissue and cell lines. Next, we predicted EYA2-targeting miRNAs, which was further evaluated using a dual luciferase reporter assay. We found that miR-219a-5p significantly repressed EYA2 expression via binding to the 3'-UTR of EYA2. Furthermore, overexpressed miR-219a-5p significantly repressed OS cell invasion and migration, which was reversed by overexpressed EYA2. While silenced miR-219a-5p induced OS cell invasion and migration, which was reversed by silenced EYA2. In conclusion, our study revealed that miR-219a-5p function as tumour suppressor regulates OS cell invasiveness by repressing EYA2 expression.
Collapse
Affiliation(s)
- Xitian Zhu
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| | - Lei Chen
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| | - Jianhua Lin
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| |
Collapse
|
21
|
Preventive Effect of Garlic Oil and Its Organosulfur Component Diallyl-Disulfide on Cigarette Smoke-Induced Airway Inflammation in Mice. Nutrients 2018; 10:nu10111659. [PMID: 30400352 PMCID: PMC6267300 DOI: 10.3390/nu10111659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Garlic (Allium sativum) has traditionally been used as a medicinal food and exhibits various beneficial activities, such as antitumor, antimicrobial, hypolipidemic, antiarthritic, and hypoglycemic activities. The aim of this study was to explore the preventive effect of garlic oil (GO) and its organosulfur component diallyl disulfide (DADS) on cigarette smoke (CS)-induced airway inflammation. Mice were exposed to CS daily for 1 h (equivalent to eight cigarettes per day) for two weeks, and intranasally instilled with lipopolysaccharide (LPS) on day 12 after the initiation of CS exposure. GO and DADS were administered to mice by oral gavage, both at rates of 20 and 40 mg/kg, for 1 h before CS exposure for two weeks. In the bronchoalveolar lavage fluid, GO and DADS inhibited the elevation in the counts of inflammatory cells, particularly neutrophils, which were induced in the CS and LPS (CS + LPS) group. This was accompanied by the lowered production (relative to the CS + LPS group) of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Histologically, GO and DADS inhibited the CS- and LPS-induced infiltration of inflammatory cells into lung tissues. Additionally, GO and DADS inhibited the phosphorylation of extracellular signal-regulated kinase and the expression of matrix metalloproteinase-9 in the lung tissues. Taken together, these findings indicate that GO and DADS could be a potential preventive agent in CS-induced airway inflammation.
Collapse
|