1
|
Gallon L, Zubair H, Rousselle TV, Shetty AC, Azim S, Bardhi E, Forte E, Drachenberg CB, Akalin E, Talwar M, Bromberg JS, Maluf DG, Mas VR. Cellular and Molecular Resolution of Focal Segmental Glomerulosclerosis Recurrence in Human Allografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.24.650454. [PMID: 40364909 PMCID: PMC12073944 DOI: 10.1101/2025.04.24.650454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Primary Focal Segmental Glomerulosclerosis (FSGS) is an important cause of end-stage renal disease (ESRD). Primary FSGS recurrence rates in transplanted kidneys are high, with 25-50% in first transplants and up to 80% in second transplants, often leading to graft loss. To investigate the molecular and cellular events underlying recurrent primary FSGS (reFSGS), we performed single-nucleus RNA sequencing (snRNA-seq) on kidney transplant biopsies from patients with reFSGS and controls with normal allograft function. Our analysis revealed that podocyte loss in reFSGS is driven by metabolic and structural dysregulation rather than apoptosis. Overexpression of vascular endothelial growth factor (VEGF)-A by podocytes was observed, potentially disrupting glomerular endothelial cell growth and permeability. Parietal epithelial cells (PECs) exhibited dedifferentiation towards a podocyte-like state, potentially compensating for podocyte loss, but this was associated with increased collagen deposition and glomerular sclerosis. Ligand-receptor interactions between glomerular cells and B cells further promoted extracellular matrix deposition and fibrosis. Additionally, tubular cells demonstrated evidence of tubular sclerosis and impaired regenerative potential, accompanied by increased interactions with T cells. These findings provide novel insights into the pathogenesis of reFSGS and identify potential therapeutic targets. This study establishes a foundation for future research to further investigate cell-type-specific interventions in recurrent FSGS.
Collapse
|
2
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Xue Y, Tong T, Zhang Y, Huang H, Zhao L, Lv H, Xiong L, Zhang K, Han Y, Fu Y, Wang Y, Huo R, Wang N, Ban T. miR-133a-3p/TRPM4 axis improves palmitic acid induced vascular endothelial injury. Front Pharmacol 2024; 14:1340247. [PMID: 38269270 PMCID: PMC10806017 DOI: 10.3389/fphar.2023.1340247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Background: Vascular endothelial injury is a contributing factor to the development of atherosclerosis and the resulting cardiovascular diseases. One particular factor involved in endothelial cell apoptosis and atherosclerosis is palmitic acid (PA), which is a long-chain saturated fatty acid. In addition, transient receptor potential melastatin 4 (TRPM4), a non-selective cation channel, plays a significant role in endothelial dysfunction caused by various factors related to cardiovascular diseases. Despite this, the specific role and mechanisms of TRPM4 in atherosclerosis have not been fully understood. Methods: The protein and mRNA expressions of TRPM4, apoptosis - and inflammation-related factors were measured after PA treatment. The effect of TRPM4 knockout on the protein and mRNA expression of apoptosis and inflammation-related factors was detected. The changes of intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were detected by Fluo-4 AM, JC-1, and DCFH-DA probes, respectively. To confirm the binding of miR-133a-3p to TRPM4, a dual luciferase reporter gene assay was conducted. Finally, the effects of miR-133a-3p and TRPM4 on intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were examined. Results: Following PA treatment, the expression of TRPM4 increases, leading to calcium overload in endothelial cells. This calcium influx causes the assemblage of Bcl-2, resulting in the opening of mitochondrial calcium channels and mitochondrial damage, ultimately triggering apoptosis. Throughout this process, the mRNA and protein levels of IL-1β, ICAM-1, and VCAM1 significantly increase. Database screenings and luciferase assays have shown that miR-133a-3p preferentially binds to the 3'UTR region of TRPM4 mRNA, suppressing TRPM4 expression. During PA-induced endothelial injury, miR-133a-3p is significantly decreased, but overexpression of miR-133a-3p can attenuate the progression of endothelial injury. On the other hand, overexpression of TRPM4 counteracts the aforementioned changes. Conclusion: TRPM4 participates in vascular endothelial injury caused by PA. Therefore, targeting TRPM4 or miR-133a-3p may offer a novel pharmacological approach to preventing endothelial injury.
Collapse
Affiliation(s)
- Yadong Xue
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Tong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuyao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haijun Huang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ling Zhao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongzhao Lv
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingzhao Xiong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kai Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuxuan Han
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuyang Fu
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yongzhen Wang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rong Huo
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- National-Local Joint Engineering Laboratory of Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, The National Development and Reform Commission, Harbin, China
| |
Collapse
|
4
|
Zhang S, Li J, Zhang D, Zhang Z, Meng S, Li Z, Liu X. miR-252 targeting temperature receptor CcTRPM to mediate the transition from summer-form to winter-form of Cacopsylla chinensis. eLife 2023; 12:RP88744. [PMID: 37965868 PMCID: PMC10651175 DOI: 10.7554/elife.88744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Hayward S, Parmesar K, Welsh GI, Suderman M, Saleem MA. Epigenetic Mechanisms and Nephrotic Syndrome: A Systematic Review. Biomedicines 2023; 11:514. [PMID: 36831050 PMCID: PMC9953384 DOI: 10.3390/biomedicines11020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Gavin I. Welsh
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| |
Collapse
|
6
|
Wang J, Luo J, Du L, Shu X, Guo C, Li T. Nuclear paraspeckle assembly transcript 1 promotes the podocyte injury via targeting miR-23b-3p/B-cell lymphoma-2 interacting protein 3 like axis. Ren Fail 2022; 44:1961-1975. [DOI: 10.1080/0886022x.2022.2091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jing Wang
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junpeng Luo
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Guangzhou, China
| | - Li Du
- The Institute of Radiation Medicine, The Academy of Military Medical Science, Beijing, China
| | - Xin Shu
- Department of Dermatology, Third Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Chengyu Guo
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tanshi Li
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Noncoding RNAs associated with IgA nephropathy. J Nephrol 2022; 36:911-923. [PMID: 36495425 DOI: 10.1007/s40620-022-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is one of the most common glomerulonephritides. The disease is characterized by haematuria, proteinuria, deposition of galactose-deficient IgA1 in the glomerular mesangium and mesangial hypercellularity, further leading to extracellular matrix expansion. Kidney biopsy is the gold standard for IgAN diagnosis. Due to the invasiveness of renal biopsy, there is an unmet need for noninvasive biomarkers to diagnose and estimate the severity of IgAN. Understanding the role of RNA molecules as genetic markers to target diseases may allow developing therapeutic and diagnostic markers. In this review we have focused on intrarenal, extrarenal and extracellular noncoding RNAs involved in the progression of IgAN. This narrative review summarizes the pathogenesis of IgAN along with the correlation of noncoding RNA molecules such as microRNAs, small interfering RNAs, circular RNAs and long non-coding RNAs that play an important role in regulating gene expression, and that represent another type of regulation affecting the expression of specific glycosyltranferases, a key element contributing to the development of IgAN.
Collapse
|
8
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
9
|
Liu F, Chen J, Luo C, Meng X. Pathogenic Role of MicroRNA Dysregulation in Podocytopathies. Front Physiol 2022; 13:948094. [PMID: 35845986 PMCID: PMC9277480 DOI: 10.3389/fphys.2022.948094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) participate in the regulation of various important biological processes by regulating the expression of various genes at the post-transcriptional level. Podocytopathies are a series of renal diseases in which direct or indirect damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of research, the exact pathogenesis of podocytopathies remains incompletely understood and effective therapies are still lacking. An increasing body of evidence has revealed a critical role of miRNAs dysregulation in the onset and progression of podocytopathies. Moreover, several lines of research aimed at improving common podocytopathies diagnostic tools and avoiding invasive kidney biopsies have also identified circulating and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies. The present review mainly aims to provide an updated overview of the recent achievements in research on the potential applicability of miRNAs involved in renal disorders related to podocyte dysfunction by laying particular emphasis on focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further investigation into these dysregulated miRNAs will not only generate novel insights into the mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Changqing Luo, ; Xianfang Meng,
| |
Collapse
|
10
|
Li W, Ehrich M. Effects of chlorpyrifos on transient receptor potential channels. Toxicol Lett 2022; 358:100-104. [DOI: 10.1016/j.toxlet.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023]
|
11
|
Dhandapani MC, Venkatesan V, Pricilla C. MicroRNAs in childhood nephrotic syndrome. J Cell Physiol 2021; 236:7186-7210. [PMID: 33819345 DOI: 10.1002/jcp.30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues of research to understand the molecular basis of a number of diseases. Because of their conservative feature in evolution and important role in the physiological function, microRNAs could be treated as predictors for disease classification and clinical process based on the specific expression. The identification of novel miRNAs and their target genes can be considered as potential targets for novel drugs. Furthermore, currently, the circulatory and urinary exosomal miRNAs are gaining increasing attention as their expression profiles are often associated with specific diseases, and they exhibit great potential as noninvasive or minimally invasive biomarkers for the diagnosis of various diseases. The remarkable stability of these extracellular miRNAs circulating in the blood or excreted in the urine underscored their key importance as biomarkers of certain diseases. There is voluminous literature concerning the role of microRNAs in other diseases, such as cardiovascular diseases, diabetic nephropathy, and so forth. However, little is known about their diagnostic ability for the pediatric nephrotic syndrome (NS). The present review article highlights the recent advances in the role of miRNAs in the pathogenesis and molecular basis of NS with an aim to bring new insights into further research applications for the development of new therapeutic agents for NS.
Collapse
Affiliation(s)
- Mohanapriya C Dhandapani
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Charmine Pricilla
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
12
|
MicroRNAs as Biomarkers for Nephrotic Syndrome. Int J Mol Sci 2020; 22:ijms22010088. [PMID: 33374848 PMCID: PMC7795691 DOI: 10.3390/ijms22010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Nephrotic syndrome represents the clinical situation characterized by presence of massive proteinuria and low serum protein caused by a variety of diseases, including minimal change nephrotic syndrome (MCNS), focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephropathy. Differentiating between diagnoses requires invasive renal biopsies in general. Even with the biopsy, we encounter difficulties to differentiate MCNS and FSGS in some cases. There is no other better option currently available for the diagnosis other than renal biopsy. MicroRNAs (miRNAs) are no-coding RNAs of approximately 20 nucleotides in length, which regulate target genes in the post-transcriptional processes and have essential roles in many diseases. MiRNAs in serum and urine have been shown as non-invasive biomarkers in multiple diseases, including renal diseases. In this article, we summarize the current knowledge of miRNAs as the promising biomarkers for nephrotic syndrome.
Collapse
|
13
|
Ardalan M, Hejazian SM, Sharabiyani HF, Farnood F, Ghafari Aghdam A, Bastami M, Ahmadian E, Zununi Vahed S, Cucchiarini M. Dysregulated levels of glycogen synthase kinase-3β (GSK-3β) and miR-135 in peripheral blood samples of cases with nephrotic syndrome. PeerJ 2020; 8:e10377. [PMID: 33362958 PMCID: PMC7749650 DOI: 10.7717/peerj.10377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Glycogen synthase kinase-3 (GSK-3β) is a serine/threonine kinase with multifunctions in various physiological procedures. Aberrant level of GSK-3β in kidney cells has a harmful role in podocyte injury. Methods In this article, the expression levels of GSK-3β and one of its upstream regulators, miR-135a-5p, were measured in peripheral blood mononuclear cells (PBMCs) of cases with the most common types of nephrotic syndrome (NS); focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephritis (MGN). In so doing, fifty-two cases along with twenty-four healthy controls were included based on the strict criteria. Results Levels of GSK-3β mRNA and miR-135 were measured with quantitative real-time PCR. There were statistically significant increases in GSK-3β expression level in NS (P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups compared to the control group. Dysregulated levels of miR-135a-5p in PBMCs was not significant between the studied groups. Moreover, a significant decrease was observed in the expression level of miR-135a-5p in the plasma of patients with NS (P = 0.020), MGN (P = 0.040), and FSGS (P = 0.046) compared to the control group. ROC curve analysis approved a diagnostic power of GSK-3β in discriminating patients from healthy controls (AUC: 0.72, P = 0.002) with high sensitivity and specificity. Conclusions Dysregulated levels of GSK-3β and its regulator miR-135a may participate in the pathogenesis of NS with different etiology. Therefore, more research is needed for understanding the relationship between them.
Collapse
Affiliation(s)
| | - Seyyedeh Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ghafari Aghdam
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Universität des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
14
|
Yang X, Zeng J, Zhou Q, Yu X, Zhong Y, Wang F, Du H, Nie F, Pang X, Wang D, Fan Y, Bai T, Xu Y. Elevating NagZ Improves Resistance to β-Lactam Antibiotics via Promoting AmpC β-Lactamase in Enterobacter cloacae. Front Microbiol 2020; 11:586729. [PMID: 33250874 PMCID: PMC7672007 DOI: 10.3389/fmicb.2020.586729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae complex (ECC), one of the most common opportunistic pathogens causing multiple infections in human, is resistant to β-lactam antibiotics mainly due to its highly expressed chromosomal AmpC β-lactamase. It seems that regulation of chromosomal AmpC β-lactamase is associated with peptidoglycan recycling. However, underlying mechanisms are still poorly understood. In this study, we confirmed that NagZ, a glycoside hydrolase participating in peptidoglycan recycling in Gram-negative bacteria, plays a crucial role in developing resistance of E. cloacae (EC) to β-lactam antibiotics by promoting expression of chromosomal AmpC β-lactamase. Our data shows that NagZ was significantly up-regulated in resistant EC (resistant to at least one type of the third or fourth generation cephalosporins) compared to susceptible EC (susceptible to all types of the third and fourth generation cephalosporins). Similarly, the expression and β-lactamase activity of ampC were markedly enhanced in resistant EC. Moreover, ectopic expression of nagZ enhanced ampC expression and resistance to β-lactam antibiotics in susceptible EC. To further understand functions of NagZ in β-lactam resistance, nagZ-knockout EC model (ΔnagZ EC) was constructed by homologous recombination. Conversely, ampC mRNA and protein levels were down-regulated, and resistance to β-lactam antibiotics was attenuated in ΔnagZ EC, while specific complementation of nagZ was able to rescue ampC expression and resistance in ΔnagZ EC. More interestingly, NagZ and its hydrolyzates 1,6-anhydromuropeptides (anhMurNAc) could induce the expression of other target genes of AmpR (a global transcriptional factor), which suggested that the promotion of AmpC by NagZ is mediated AmpR activated by anhMurNAc in EC. In conclusion, these findings provide new elements for a better understanding of resistance in EC, which is crucial for the identification of novel potential drug targets.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zeng
- Division of Pulmonary and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Zhou
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuejing Yu
- Department of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, United States
| | - Yuanxiu Zhong
- Department of Biotechnology, Chengdu Medical College, Chengdu, China
| | - Fuying Wang
- Department of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, United States
| | - Hongfei Du
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Nie
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xueli Pang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan Wang
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yingzi Fan
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tingting Bai
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Wang Z, Liao Y, Wang L, Lin Y, Ye Z, Zeng X, Liu X, Wei F, Yang N. Small RNA deep sequencing reveals novel miRNAs in peripheral blood mononuclear cells from patients with IgA nephropathy. Mol Med Rep 2020; 22:3378-3386. [PMID: 32945407 PMCID: PMC7453501 DOI: 10.3892/mmr.2020.11405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) contribute to the deposition of immunoglobulin A (IgA) and progression of IgA nephropathy (IgAN). This study was performed to identify novel microRNAs (miRNAs/miRs) associated with IgAN. Small RNAs were isolated from PBMCs collected from 10 healthy participants and 10 patients with IgAN; the RNAs were then subjected to high‑throughput small RNA sequencing. The results showed that miRNAs constituted 70.33 and 69.83% of small RNAs in PBMCs from healthy participants and patients with IgAN, respectively. In total, 44 differentially expressed miRNAs were identified, of which 34 were upregulated and 10 were downregulated. Among these differentially expressed miRNAs, most showed novel associations with IgAN, except miR‑148a‑3p, miR‑184 and miR‑200a. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes of the differentially expressed miRNAs were primarily enriched in cancer pathways, the PI3K‑Akt signaling pathway and MAPK pathways, all of which control cell proliferation and gene expression. Moreover, miR‑3121‑3p, miR‑203a‑3p and miR‑200a‑3p may regulate core 1 synthase, glycoprotein‑N‑acetylgalactosamine 3‑β‑galactosyltransferase 1 (C1GALT1) expression by binding to its 3' untranslated region. In conclusion, 44 differentially expressed miRNAs were discovered, 41 of which were newly found to be associated with IgAN. The differentially expressed miRNAs may regulate the progression of IgAN by controlling the behavior of PBMCs or deposition of IgA via targeting of signaling pathways or expression of C1GALT1. These findings may provide a basis for further research regarding IgAN diagnosis and therapy.
Collapse
Affiliation(s)
- Ziyan Wang
- Blood Purification Center, Air Force Hospital of Southern Theater, PLA, Guangzhou, Guangdong 510062, P.R. China
| | - Yu Liao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lixin Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yanzhao Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ziyi Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xufang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaorou Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fangning Wei
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Nizhi Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
17
|
Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W. microRNAs in chronic kidney disease. Clin Chim Acta 2019; 491:59-65. [PMID: 30639583 DOI: 10.1016/j.cca.2019.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) results in high morbidity and mortality worldwide causing a huge socioeconomic burden. MicroRNA (miRNA) exert critical regulatory functions by targeting downstream genes and have been associated with many pathophysiologic processes including CKD. In fact, many studies have shown that the expression of various miRNAs was significantly changed in CKD. Current investigations have focused on revealing the relationship between miRNAs and CKD states including diabetic nephropathy, lupus nephritis, focal segmental glomerulosclerosis and IgA nephropathy. In this review, we summarize the latest advances elucidating miRNA involvement in the progression of CKD and demonstrate that miRNAs have the potential to be effective biomarkers and therapeutic targets for subsequent treatment.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China.
| |
Collapse
|
18
|
Barbagallo C, Passanisi R, Mirabella F, Cirnigliaro M, Costanzo A, Lauretta G, Barbagallo D, Bianchi C, Pagni F, Castorina S, Granata A, Di Pietro C, Ragusa M, Malatino LS, Purrello M. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J Cell Physiol 2018; 234:12625-12636. [PMID: 30515781 DOI: 10.1002/jcp.27851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Passanisi
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy
| | - Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arianna Costanzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| | - Sergio Castorina
- Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Antonio Granata
- Unit of Nephrology, Ospedale S. Giovanni di Dio, Agrigento, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Lorenzo S Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y, Kong X. MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med 2018; 41:1909-1916. [PMID: 29393356 PMCID: PMC5810199 DOI: 10.3892/ijmm.2018.3428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA/miR) dysregulation has been reported to be fundamental in the development and progression of cardiac hypertrophy and fibrosis. In the present study, miR-327 levels in fibroblasts were increased in response to cardiac hypertrophy induced by transverse aortic constriction with prominent cardiac fibrosis, particularly when compared with the levels in unstressed cardiomyocytes. In neonatal rat cardiac fibroblasts, induced expression of miR-327 upregulated fibrosis-associated gene expression and activated angiotensin II-induced differentiation into myofibroblasts, as assessed via α-smooth muscle actin staining. By contrast, miR-327 knockdown mitigated angiotensin II-induced differentiation. Cardiac fibroblast proliferation was not affected under either condition. In a mouse model subjected to transverse aortic constriction, miR-327 knockdown through tail-vein injection reduced the development of cardiac fibrosis and ventricular dysfunction. miR-327 was demonstrated to target integrin β3 and diminish the activation of cardiac fibroblasts. Thus, the present study supports the use of miR-327 as a therapeutic target in the reduction of cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yejiao Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and Microvascular Complications of Diabetes. Int J Endocrinol 2018; 2018:6890501. [PMID: 29707000 PMCID: PMC5863305 DOI: 10.1155/2018/6890501] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
In the last decade, miRNAs have received substantial attention as potential players of diabetes microvascular complications, affecting the kidney, the retina, and the peripheral neurons. Compelling evidence indicates that abnormally expressed miRNAs have pivotal roles in key pathogenic processes of microvascular complications, such as fibrosis, apoptosis, inflammation, and angiogenesis. Moreover, clinical research into innovative both diagnostic and prognostic tools suggests circulating miRNAs as possible novel noninvasive markers of diabetes microvascular complications. In this review, we summarize current knowledge and understanding of the role of miRNAs in the injury to the microvascular bed in diabetes and discuss the potential of miRNAs as clinical biomarkers of diabetes microvascular complications.
Collapse
Affiliation(s)
- F. Barutta
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bellini
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - R. Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - G. Bruno
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| | - G. Gruden
- Laboratory of Diabetic Nephropathy, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|