1
|
Mohamed MM, Zaki HF, Kamel AS. Possible Interaction of Suramin with Thalamic P2X Receptors and NLRP3 Inflammasome Activation Alleviates Reserpine-Induced Fibromyalgia-Like Symptoms. J Neuroimmune Pharmacol 2025; 20:51. [PMID: 40329125 PMCID: PMC12055955 DOI: 10.1007/s11481-025-10207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
The high pain sensitivity in fibromyalgia (FM) is processed by the thalamus that presents as a key component in the pain pathway in FM patients. Noteworthy, Purinergic receptors, specifically P2X, are implicated in pain signaling and neuroinflammation via inflammasome signaling. However, there is no available data on the impact of pharmacological intervention on the P2X receptor in thalamic pain transmission in FM. To investigate this aspect, the clinically tested P2X inhibitor, Suramin (SURM), was utilized. FM was induced over three days using Reserpine (1 mg/kg/day, s.c.), followed by a single dose of SURM (100 mg/kg, i.p.). At the molecular level, SURM countered the overexpression of P2X7 and P2X4 receptors accompanied by reduced NLRP3 inflammasome complex and pyroptotic markers like gasdermin-D. This was associated with the suppression of the p38-MAPK and NF-κB pathways, along with a decrease in pro-inflammatory cytokines and tumor necrosis factor-α as observed by increased CD86 expression on M1 microglia phenotype, a neuroinflammatory marker. Concurrently, blocking the P2X receptor shifted microglia polarization towards the M2 phenotype, marked by elevated CD163 expression, as a neuroprotective mechanism. This was outlined by increased neurotrophic and anti-inflammatory IL-10 with normalization of disturbed neurotransmitters. Behaviorally, SURM ameliorated the heightened pain processing, as observed in mechanical and thermal pain tests. Furthermore, it lowered Reserpine-induced motor impairment in the rotarod and open-field tests. This improvement in the somatosensory experience was reflected in alleviating depressive-like behavior in the forced swimming test. These findings highlight the therapeutic potential of blocking thalamic P2X receptors in alleviating fibromyalgia symptoms.
Collapse
Affiliation(s)
- Maram M Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
de Souza VS, Medeiros LF, Stein DJ, de Oliveira CL, Medeiros HR, Dussan-Sarria JA, Caumo W, de Souza A, Torres ILS. Transcranial direct current stimulation is more effective than pregabalin in controlling nociceptive and anxiety-like behaviors in a rat fibromyalgia-like model. Scand J Pain 2024; 24:sjpain-2023-0038. [PMID: 38557595 DOI: 10.1515/sjpain-2023-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.
Collapse
Affiliation(s)
- Vanessa Silva de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Universidade La Salle, Canoas, RS, 92010-000, Brazil
- Post graduate program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Camila Lino de Oliveira
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | | | - Wolnei Caumo
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Andressa de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Iraci L S Torres
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Department of Pharmacology, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
3
|
Antioxidant Activity of Valeriana fauriei Protects against Dexamethasone-Induced Muscle Atrophy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3645431. [PMID: 35069972 PMCID: PMC8769843 DOI: 10.1155/2022/3645431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Skeletal muscle atrophy is defined as wasting or loss of muscle. Although glucocorticoids (GCs) are well-known anti-inflammatory drugs, their long-term or high-dose use induces skeletal muscle atrophy. Valeriana fauriei (VF) is used to treat restlessness, anxiety, and sleep disorders; however, its effects on skeletal muscle health have not been investigated. This study investigated whether Valeriana fauriei could ameliorate muscle atrophy. We induced muscle atrophy in vitro and in vivo, by treatment with dexamethasone (DEX), a synthetic GC. In DEX-induced myotube atrophy, Valeriana fauriei treatment increased the fusion index and decreased the expression of muscle atrophic genes such as muscle atrophy F-box (MAFbx/Atrogin-1) and muscle RING-finger protein 1 (MuRF1). In DEX-treated mice with muscle atrophy, Valeriana fauriei supplementation increased the ability to exercise, muscle weight, and cross-sectional area, whereas it inhibited myosin heavy chain isoform transition and the expression of muscle atrophy biomarkers. Valeriana fauriei treatment led to via the downregulation of muscle atrophic genes via inhibition of GC receptor translocation. Valeriana fauriei was also found to act as a reactive oxygen species (ROS) scavenger. Didrovaltrate (DI), an iridoid compound from Valeriana fauriei, was found to downregulate atrophic genes and decrease ROS in the DEX-induced myotube atrophy. Consolidated, our results indicate that Valeriana fauriei prevents DEX-induced muscle atrophy by inhibiting GC receptor translocation. Further, Valeriana fauriei acts as a ROS scavenger, and its functional compound is didrovaltrate. We suggest that Valeriana fauriei and its functional compound didrovaltrate possess therapeutic potentials against muscle atrophy.
Collapse
|
4
|
Plant Species of Sub-Family Valerianaceae-A Review on Its Effect on the Central Nervous System. PLANTS 2021; 10:plants10050846. [PMID: 33922184 PMCID: PMC8144999 DOI: 10.3390/plants10050846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.
Collapse
|