2
|
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, Li Z, Zhu X, Ren R, Ge Z, Lai D, Lai EY, Chen T, Wang K, Liang P, Qin L, Liu C, Qiu C, Simons M, Yu L. Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension. Circ Res 2023; 133:508-531. [PMID: 37589160 DOI: 10.1161/circresaha.122.321200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yuewen Wang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, China (Yuewen Wang)
| | - Linge Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yunhui Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Yefeng Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Hongkun Wang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Zhoubin Li
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.G.)
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
| | - En Yin Lai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Ting Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.)
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.)
| | - Ping Liang
- Institute of Translational Medicine (H.W., P.L.), Hangzhou, China
| | - Lingfeng Qin
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Cuiqing Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China (C.L.)
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| | - Michael Simons
- Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.)
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China
- Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China
| |
Collapse
|
7
|
Wu G, Xu Y, Ruan N, Li J, Lv Q, Zhang Q, Chen Y, Wang Q, Xia Q, Li Q. Genetic alteration and clinical significance of SUMOylation regulators in multiple cancer types. J Cancer 2020; 11:6823-6833. [PMID: 33123273 PMCID: PMC7592005 DOI: 10.7150/jca.49042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to investigate the genetic variation, gene expression differences, and clinical significance of SUMOylation regulators in pan-cancers. Based on previous studies, we gained a better understanding of the biological process of SUMOylation and the status of current research. In the present study, we employed a wide range of bioinformatics methods. We used genetic variation and mRNA expression data in the Cancer Genome Atlas (TCGA) to construct a panoramic view of the single nucleotide variants, copy number variants, and gene expression changes in SUMOylation regulators in various tumors. Subsequently, we used the String website and the Cytoscape tool to construct the PPI network between these regulators. We used the GSCALite website to determine the relationship between these regulators and cancer pathways and drug sensitivity. We constructed images of co-expression between these regulators using the R programming language. Using clinical data from TCGA, we performed hazard ratio analysis for these regulators in pan-cancer. Most importantly, we used these regulators to successfully establish risk signatures related to patient prognosis in multiple tumors. Finally, in KIRC, we conducted gene-set enrichment analysis (GSEA) of the five molecules in its risk signatures. We found that these five molecules are involved in multiple cancer pathways. In short, we have comprehensively interpreted the detailed biological process of SUMOylation at the genetic level for the first time, successfully constructed multiple risk signatures, and conducted GSEA in KIRC. We believe that these findings provide credible and valuable information that is relevant for future clinical diagnoses and scientific research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| |
Collapse
|