1
|
Özkan H, Kaya U, Keçeli HH, Sertkol R, Saribay MK. Expression Patterns of miR-29b and miR-148a in Colostrum of Awassi Sheep With Higher Immunoglobulin G Levels. Vet Med Sci 2025; 11:e70335. [PMID: 40184063 PMCID: PMC11970303 DOI: 10.1002/vms3.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/17/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
This study aimed to investigate the compositional parameters and expression patterns of miR-29b and miR-148a in sheep colostrum containing low and high levels of Immunoglobulin G (IgG). Blood and colostrum samples were collected within the first 6 h following birth from 24 pregnant Awassi sheep. On the basis of the determined colostrum IgG levels, low (Low IgG [LIGG], 44.83 ± 4.97 mg/mL) and high (High IgG [HIGG], 80.71 ± 3.31 mg/mL) groups were formed. In addition to measuring colostrum compositional parameters, expressions of miR-29b and miR-148a were determined in plasma and colostrum. Although somatic cell score (SCS), pH and electrical conductivity (EC) were higher, fat-free dry matter (FFDM), protein, lactose and freezing point were lower in HIGG group. Compared to LIGG, miR-29b was downregulated approximately 5-fold in the HIGG, whereas miR-148a was downregulated more than 3-fold in colostrum. There were negative correlations between colostrum miR-148a and colostrum IgG, SCS and pH. Colostrum IgG was positively correlated with pH and freezing point and negatively correlated with FFDM, protein and lactose. Area under the curve (AUC) values of SCS, pH, FFDM, protein, lactose, freezing point, EC and miR-148a (colostrum) were significant. Sensitivity and specificity of pH were 100% and 66.7%, of SCS were 81.8% and 66.7% and of miR-148a (Colostrum) were 75% and 75% in HIGG and LIGG. According to the results, miR-29b might be an important molecular target for lamb development, whereas miR-148a could be a potential biomarker for colostrum quality. Moreover, the study showed that SCS and pH might be useful diagnostic parameters for IgG status because of higher sensitivity rates and AUC values.
Collapse
Affiliation(s)
- Hüseyin Özkan
- Department of GeneticsFaculty of Veterinary MedicineHatay Mustafa Kemal UniversityAntakyaHatayTurkiye
| | - Ufuk Kaya
- Department of Biostatistics, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityAntakyaHatayTurkiye
| | - Hasan Hüseyin Keçeli
- Department of GeneticsFaculty of Veterinary MedicineHatay Mustafa Kemal UniversityAntakyaHatayTurkiye
| | - Ramazan Sertkol
- Department of Veterinary Obstetrics, Institute of Health SciencesGynecology, and Artificial InseminationHatay Mustafa Kemal UniversityAntakyaHatayTurkiye
| | - Mustafa Kemal Saribay
- Department of Obstetrics and Gynecology, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityAntakyaHatayTurkiye
| |
Collapse
|
2
|
Wang B, Zhao JL, Cai WY, Wang GY, Li YZ, Wang JS, Xie HT, Zhang MC. Progress in Transdifferentiation of Autologous Alternative Cell Sources into Corneal Epithelial Cells. Stem Cell Rev Rep 2025; 21:226-235. [PMID: 39480612 PMCID: PMC11762461 DOI: 10.1007/s12015-024-10808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Corneal limbal epithelial stem cells (LESCs) play a crucial role in corneal epithelium regeneration. Severe damage to these cells can result in limbal stem cell deficiency (LSCD), characterized by repeated corneal conjunctivalization, leading to corneal turbidity and scar formation. Restoring functional LESCs and their ecological location are essential for treating LSCD. The goal of this review is to provide researchers and clinicians with key insights into LESCs biology and to conclude the current cell-based therapies advancement in LSCD treatments. Therapeutic cell resources mainly include mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), skin keratinocyte stem cells (SKCs), and oral mucosal epithelial cells (OMECs).
Collapse
Affiliation(s)
- Bei Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang-Lan Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Cai
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gong-Yue Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Zhi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Mijanović O, Pylaev T, Nikitkina A, Artyukhova M, Branković A, Peshkova M, Bikmulina P, Turk B, Bolevich S, Avetisov S, Timashev P. Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. MICROMACHINES 2021; 12:mi12111336. [PMID: 34832752 PMCID: PMC8618371 DOI: 10.3390/mi12111336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell-transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host-graft interaction dynamics towards proper integration and long-term functionality of the transplant.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Correspondence:
| | - Timofey Pylaev
- Saratov Medical State University N.A. V.I. Razumovsky, 112 Bolshaya Kazachya St., 410012 Saratov, Russia;
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Angelina Nikitkina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Margarita Artyukhova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Ana Branković
- Department of Forensic Engineering, University of Criminal Investigation and Police Studies, 196 Cara Dušana St., Belgrade 11000, Serbia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Boris Turk
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
| | - Sergei Avetisov
- Department of Eye Diseases, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
- Research Institute of Eye Diseases, 11 Rossolimo St., 119021 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
5
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|