1
|
Pérez-Villalobos MC, Barba-González A, García-Carrillo N, Muñoz-Ortega MH, Sánchez-Alemán E, Ávila-Blanco ME, Morones-Gamboa JC, Ventura-Juárez J, Martínez-Hernández SL. Nephroprotective effect of pioglitazone in a Wistar rat model of adenine‑induced chronic kidney disease. Exp Ther Med 2024; 28:392. [PMID: 39161617 PMCID: PMC11332140 DOI: 10.3892/etm.2024.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease with a high mortality rate and a worldwide prevalence of 13.4%, triggered by various diseases with high incidence. The aim of the present study was to investigate the anti-inflammatory and antifibrotic effect of pioglitazone on kidney in an adenine-induced Wistar rats and the mechanisms possibly involved. CKD was induced in 40 rats. Rats were divided into two groups, which were split into the following sub-groups: i) Therapeutic (pioglitazone administered after renal damage) divided into intact (healthy), adenine (CKD) and adenine/pioglitazone (treatment) and ii) prophylactic (adenine and pioglitazone administered at the same time) split into intact (healthy), adenine (CKD), endogenous reversion (recovery without treatment), adenine/pioglitazone (treatment) and pioglitazone sub-groups. Reverse transcription-quantitative PCR (collagen I, α-SMA and TGF-β), and hematoxylin-eosin, Masson's trichrome and Sirius red staining were performed to measure histological markers of kidney damage, also the serum markers (urea, creatinine and uric acid) were performed, for analyze the effects of pioglitazone. In the adenine/pioglitazone rats of the therapeutic group, renal function parameters such as eGFR increased and serum creatinine decreased from those of untreated rats (CKD), however the renal index, serum urea, abnormalities in renal morphology, inflammatory cells and relative gene expression of collagen I, α-SMA and TGF-β did not change relative to the CKD rats. In adenine/pioglitazone rats, extracellular matrix collagen accumulation was significantly lower than the CKD rats. On the other hand, in adenine/pioglitazone rats of the prophylactic group, the renal index, creatinine, urea, uric acid serum and relative gene expression of collagen I, α-SMA, and TGF-β were significantly lower, as well as the presence of 2,8-dihydroxyadenine crystals, and extracellular matrix collagen compared with CKD rats. In addition, the eGFR in the treatment group was similar to healthy rats, renal morphology was restored, and inflammatory cells were significantly lower. In conclusion, pioglitazone has a nephroprotective effect when administered in the early stages of kidney damage, reducing inflammatory and fibrotic processes and improving glomerular filtration rate. Furthermore, in the late phase of treatment, a tendency to decrease creatinine and increase eGFR was observed.
Collapse
Affiliation(s)
| | - Andrea Barba-González
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Nicté García-Carrillo
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Martín Humberto Muñoz-Ortega
- Department of Chemistry, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Esperanza Sánchez-Alemán
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
- Family Medicine Unit 8, Mexican Social Security Institute, 20180 Aguascalientes, Mexico
| | - Manuel Enrique Ávila-Blanco
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | | | - Javier Ventura-Juárez
- Department of Morphology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| | - Sandra Luz Martínez-Hernández
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, 20100 Aguascalientes, Mexico
| |
Collapse
|
2
|
Xue R, Xiao H, Kumar V, Lan X, Malhotra A, Singhal PC, Chen J. The Molecular Mechanism of Renal Tubulointerstitial Inflammation Promoting Diabetic Nephropathy. Int J Nephrol Renovasc Dis 2023; 16:241-252. [PMID: 38075191 PMCID: PMC10710217 DOI: 10.2147/ijnrd.s436791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024] Open
Abstract
Diabetic nephropathy (DN) is a common complication affecting many diabetic patients, leading to end-stage renal disease. However, its pathogenesis still needs to be fully understood to enhance the effectiveness of treatment methods. Traditional theories are predominantly centered on glomerular injuries and need more explicit explanations of recent clinical observations suggesting that renal tubules equally contribute to renal function and that tubular lesions are early features of DN, even occurring before glomerular lesions. Although the conventional view is that DN is not an inflammatory disease, recent studies indicate that systemic and local inflammation, including tubulointerstitial inflammation, contributes to the development of DN. In patients with DN, intrinsic tubulointerstitial cells produce many proinflammatory factors, leading to medullary inflammatory cell infiltration and activation of inflammatory cells in the interstitial region. Therefore, understanding the molecular mechanism of renal tubulointerstitial inflammation contributing to DN injury is of great significance and will help further identify key factors regulating renal tubulointerstitial inflammation in the high glucose environment. This will aid in developing new targets for DN diagnosis and treatment and expanding new DN treatment methods.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Vinod Kumar
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of China
| |
Collapse
|
3
|
Li Z, Li L, Lv X, Hu Y, Cui K. Ginseng Saponin Rb1 Attenuates Cigarette Smoke Exposure-Induced Inflammation, Apoptosis and Oxidative Stress via Activating Nrf2 and Inhibiting NF-κB Signaling Pathways. Int J Chron Obstruct Pulmon Dis 2023; 18:1883-1897. [PMID: 37662486 PMCID: PMC10473247 DOI: 10.2147/copd.s418421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Cigarette smoke exposure is one of the major risk factors for the development of chronic obstructive pulmonary disease (COPD). Ginseng saponin Rb1 (Rb1) is a natural extract from ginseng root with anti-inflammatory and anti-oxidant effects. However, the underlying mechanism of the Rb1 in COPD remains unknown. Therefore, we sought to explore the role of Rb1 in cigarette smoke-induced damage and to reveal the potential mechanism. Methods The cell viability and lactose dehydrogenase (LDH) activity were analyzed using cell counting kit-8 (CCK-8) and LDH release assays. We further investigated the inflammation, apoptosis and oxidative stress markers and analyzed the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid-2-related factor 2 (Nrf2) pathways in BEAS-2B cells and COPD rat model following cigarette smoke extract (CSE) exposure. Results Our results showed that CSE promoted inflammation, apoptosis and oxidative stress in BEAS-2B cells. Rb1 suppressed the inflammatory response by inhibiting expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β and inhibiting the NF-κB signaling pathway. Rb1 possessed the ability to hinder cell apoptosis induced by CSE. In addition, Rb1 concurrently reduced CSE-induced oxidative reactions and promoted Nrf2 translocation to nucleus. For in vivo study, Rb1 treatment alleviated CSE-induced lung injury, apoptosis, reactive oxygen species (ROS) release and inflammatory reactions. Also, Rb1 treatment activated Nrf2 signaling and inactivated NF-κB signaling in COPD rats. Conclusion Rb1 attenuates CSE-induced inflammation, apoptosis and oxidative stress by suppressing NF-κB and activating Nrf2 signaling pathways, which provides novel insights into the mechanism underlying CSE-induced COPD.
Collapse
Affiliation(s)
- Zhizheng Li
- Department of Respiratory and Critical Care Medicine, Tangshan Gongren Hospital, Tangshan, People’s Republic of China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Tangshan Gongren Hospital, Tangshan, People’s Republic of China
| | - Xiaohui Lv
- Department of Respiratory and Critical Care Medicine, Tangshan Gongren Hospital, Tangshan, People’s Republic of China
| | - Yingqian Hu
- Department of Respiratory and Critical Care Medicine, Tangshan Gongren Hospital, Tangshan, People’s Republic of China
| | - Kun Cui
- Respiratory Medicine, Tangshan Gongren Hospital, Tangshan, People’s Republic of China
| |
Collapse
|
4
|
Zhang L, Liu X, Liang J, Wu J, Tan D, Hu W. Lefty-1 inhibits renal epithelial-mesenchymal transition by antagonizing the TGF-β/Smad signaling pathway. J Mol Histol 2020; 51:77-87. [PMID: 32065356 DOI: 10.1007/s10735-020-09859-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process in which tubular epithelial cells lose their phenotypes, and new mesenchymal feature are obtained. In particular, type II EMT possibly contributes to renal tissue fibrogenesis. Recent studies indicate that Lefty-1, a novel member of the TGF-β superfamily with pleiotropical and biological regulation characteristics on TGF-β and other signaling pathways, is considered to have potential fibrotic effects. However, its role in EMT, which is often a long-term consequence of renal tubulointerstitial fibrosis, remains unknown. In this study, we found that Lefty-1 alleviates EMT induction through antagonizing TGF-β/Smad pathway in vivo and in vitro. In unilateral ureteral obstruction (UUO) model mice, administration of adenovirus-mediated overexpression of Lefty-1 (Ad-Lefty-1) significantly reduced TGF-β1/Smad expression and alleviated the phenotypic transition of epithelial cells to mesenchymal cells and extracellular matrix (ECM) accumulation. In high glucose-induced rat renal tubular duct epithelial cell line (NRK-52E), EMT and ECM synthesis were alleviated with Lefty-1 treatment, which significantly inhibited TGF-β1/Smad pathway activation in UUO mice and high glucose-treated NRK-52E cells. Thus, Lefty-1 can alleviate EMT and renal interstitial fibrosis in vivo and in vitro through antagonizing the TGF-β/Smad pathway, and Lefty-1 might have a potential novel therapeutic effect on fibrotic kidney diseases.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China.
| | - Xiaohua Liu
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jun Liang
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jianhua Wu
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Daqing Tan
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Wei Hu
- Department of Urology, The First Affiliated Hospital of University of South of China, Hengyang, 421001, Hunan, China
| |
Collapse
|
5
|
(Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep 2019; 9:11667. [PMID: 31406124 PMCID: PMC6690878 DOI: 10.1038/s41598-019-47055-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023] Open
Abstract
Recently we demonstrated that increased renal (Pro)renin receptor (PRR) expression in diabetes contributes to development of diabetic kidney disease. However, the exact mechanisms involving PRR activity and diabetic kidney dysfunction are unknown. We hypothesized that PRR is localized in renal mitochondria and contributes to renal fibrosis and apoptosis through oxidative stress-induced mitochondria dysfunction. Controls and streptozotocin-induced diabetic C57BL/6 mice were injected with scramble shRNA and PRR shRNA and followed for a period of eight weeks. At the end of study, diabetic mice showed increased expressions of PRR and NOX4 in both total kidney tissue and renal mitochondria fraction. In addition, renal mitochondria of diabetic mice showed reduced protein expression and activity of SOD2 and ATP production and increased UCP2 expression. In diabetic kidney, there was upregulation in the expressions of caspase3, phos-Foxo3a, phos-NF-κB, fibronectin, and collagen IV and reduced expressions of Sirt1 and total-FOXO3a. Renal immunostaining revealed increased deposition of PRR, collagen and fibronectin in diabetic kidney. In diabetic mice, PRR knockdown decreased urine albumin to creatinine ratio and the renal expressions of PRR, NOX4, UCP2, caspase3, phos-FOXO3a, phos-NF-κB, collagen, and fibronectin, while increased the renal mitochondria expression and activity of SOD2, ATP production, and the renal expressions of Sirt1 and total-FOXO3a. In conclusion, increased expression of PRR localized in renal mitochondria and diabetic kidney induced mitochondria dysfunction, and enhanced renal apoptosis and fibrosis in diabetes by upregulation of mitochondria NOX4/SOD2/UCP2 signaling pathway.
Collapse
|
6
|
Shindo T, Doi S, Nakashima A, Sasaki K, Arihiro K, Masaki T. TGF-β1 promotes expression of fibrosis-related genes through the induction of histone variant H3.3 and histone chaperone HIRA. Sci Rep 2018; 8:14060. [PMID: 30232404 PMCID: PMC6145928 DOI: 10.1038/s41598-018-32518-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis is a histological manifestation that occurs in almost every type of chronic kidney disease. Histone variant H3.3 and its chaperone, histone cell cycle regulation defective homolog A (HIRA), serve as epigenetic marks that regulate transcriptional activity. In this study, we assessed the roles of histone H3.3 and HIRA in unilateral ureteral-obstruction (UUO) mice. In UUO mice, the levels of histone H3.3 and HIRA were significantly upregulated in the kidneys. These upregulated levels were decreased by a TGF-β1 neutralizing antibody. TGF-β1 induced histone H3.3 and HIRA expression in vitro via a Smad3-dependent pathway in normal rat kidney (NRK)-52E cells. Additionally, knockdown of HIRA expression decreased histone H3.3 expression and fibrogenesis in NRK-52E cells after TGF-β1 stimulation. Chromatin immunoprecipitation analysis revealed that promoters of fibrosis-related genes were immunoprecipitated with both histone H3.3 and HIRA in NRK-52E cells. Lastly, in human kidney biopsies from patients diagnosed with IgA nephropathy, histone H3.3 and HIRA immunostaining correlated positively with areas of fibrosis and estimated glomerular filtration rate. In conclusion, TGF-β1 induces expression of histone H3.3 and HIRA, which regulates expression of fibrosis-related genes.
Collapse
Affiliation(s)
- Toshihiro Shindo
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|