1
|
Kim DH, Park MW, Shin HI, Lee BC, Kim DK, Cho CH, Kim YJ. Effectiveness and safety of human placenta hydrolysate injection into subacromial space in patients with shoulder impingement syndrome: a single-blind, randomized trial. BMC Musculoskelet Disord 2025; 26:11. [PMID: 39754114 PMCID: PMC11697622 DOI: 10.1186/s12891-024-08266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Human placental hydrolysate (hPH) contains anti-inflammatory substances. This study aimed to analyze whether injecting hPH into the subacromial space could reduce pain in patients with shoulder impingement syndrome. METHODS This single-blind, randomized controlled study enrolled 50 patients with shoulder impingement syndrome who were randomly assigned to either the hPH or placebo groups. All patients received three ultrasound-guided subacromial space injections of 4 mL hPH or normal saline every week. Outcome measurements included the Visual Analog Scale (VAS) score during daily activity, Shoulder Pain and Disability Index (SPADI), and EuroQoL 5-Dimension 5-Level (EQ-5D-5L) utility index. Patients were followed up for nine weeks after the last injection. RESULTS Significant differences were noted in the VAS (p < 0.001) during daily activity, SPADI total score (p < 0.001), and EQ-5D-5L utility index (p < 0.001) nine weeks after the last injection between the hPH group and placebo group. Significant time effects were observed for all outcome measurements (all p < 0.001) in the hPH group but not in the placebo group. No severe complications, such as local infections or laboratory abnormalities, were reported during this study. CONCLUSIONS Subacromial injections showed significant improvement in pain, functional level, and quality of life in patients with shoulder impingement syndrome. Therefore, hPH can be used as an alternative treatment for shoulder impingement syndrome. TRIAL REGISTRATION The trial was registered on www. CLINICALTRIALS gov (NCT05528705, Registration Date: 06/09/2022).
Collapse
Affiliation(s)
- Du Hwan Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Myung Woo Park
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Iee Shin
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Byung Chan Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Orthopedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ye-Ji Kim
- Department of Orthopedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
2
|
Lee JO, Jang Y, Park AY, Lee JM, Jeong K, Jeon SH, Jin H, Im M, Kim JW, Kim BJ. Human Placenta Extract (HPH) Suppresses Inflammatory Responses in TNF-α/IFN-γ-Stimulated HaCaT Cells and a DNCB Atopic Dermatitis (AD)-Like Mouse Model. J Microbiol Biotechnol 2024; 34:1969-1980. [PMID: 39252632 PMCID: PMC11540608 DOI: 10.4014/jmb.2406.06045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Atopic dermatitis (AD), a chronic inflammatory disease, severely interferes with patient life. Human placenta extract (HPH; also known as human placenta hydrolysate) is a rich source of various bioactive substances and has widely been used to dampen inflammation, improve fatigue, exert anti-aging effects, and promote wound healing. However, information regarding HPH's incorporation in AD therapies is limited. Therefore, this study aimed to evaluate HPH's effective potential in treating AD using tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated human keratinocytes (HaCaT), immunized splenocytes, and a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. In TNF-α /IFN-γ-stimulated HaCaT cells, HPH markedly reduced the production of reactive oxygen species (ROS) and restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1(SOD1), catalase, and filaggrin (FLG). HPH reduced interleukin (IL)-6; thymus- and activation-regulated chemokine (TARC); thymic stromal lymphopoietin (TSLP); and regulated upon activation, normal T cell expressed and presumably secreted (RANTES) levels and inhibited nuclear factor kappa B phosphorylation. Additionally, HPH suppressed the T helper 2 (Th2) immune response in immunized splenocytes. In the AD-like mouse model, it significantly mitigated the DNCB-induced elevation in infiltrating mast cells and macrophages, epidermal thickness, and AD symptoms. HPH also reduced TSLP levels and prevented FLG downregulation. Furthermore, it decreased the expression levels of IL-4, IL-5, IL-13, TARC, RANTES, and immunoglobulin E (IgE) in serum and AD-like skin lesion. Overall, our findings demonstrate that HPH effectively inhibits AD development and is a potentially useful therapeutic agent for AD-like skin disease.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youna Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Hui Jin
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Gyeonggi-do 16950, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
3
|
Gwam C, Ohanele C, Hamby J, Chughtai N, Mufti Z, Ma X. Human placental extract: a potential therapeutic in treating osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:322. [PMID: 37404996 PMCID: PMC10316113 DOI: 10.21037/atm.2019.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/29/2019] [Indexed: 09/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option due to its anti-inflammatory, antioxidant, and growth stimulatory properties. These properties are useful in preventing cell death and senescence, which may optimize in-situ cartilage regeneration. In this review, we discuss the anatomy and physiology of the placenta, as well as explore in vivo and in vitro studies assessing its effects on tissue regeneration. Finally, we assess the potential role of HPE in cartilage regenerative medicine and OA. The Medline database was utilized for all studies that involved the use of HPE or human placenta hydrolysate. Exclusion criteria included articles not written in English, conference reviews, editorials, letters to the editor, surveys, case reports, and case series. HPE had significant anti-inflammatory and regenerative properties in vitro and in vivo. Furthermore, HPE had a role in attenuating cellular senescence and cell apoptosis via reduction of reactive oxidative species both in vitro and in vivo. One study explored the effects of HPE in OA and demonstrated reduction in cartilage catabolic gene expression, indicating HPE's effect in attenuating OA. HPE houses favorable properties that can attenuate and reverse tissue damage. This may be a beneficial therapeutic in OA as it creates a more favorable environment for in-situ cartilage regeneration. More well designed in-vitro and in-vivo studies are needed to define the role of HPE in treating OA.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jacob Hamby
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Wu X, Zheng X, Wen Q, Zhang Y, Tang H, Zhao L, Shi F, Li Y, Yin Z, Zou Y, Song X, Li L, Zhao X, Ye G. Swertia cincta Burkill alleviates LPS/D-GalN-induced acute liver failure by modulating apoptosis and oxidative stress signaling pathways. Aging (Albany NY) 2023; 15:5887-5916. [PMID: 37379130 PMCID: PMC10333062 DOI: 10.18632/aging.204848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Swertia cincta Burkill is widely distributed along the southwestern region of China. It is known as "Dida" in Tibetan and "Qingyedan" in Chinese medicine. It was used in folk medicine to treat hepatitis and other liver diseases. To understand how Swertia cincta Burkill extract (ESC) protects against acute liver failure (ALF), firstly, the active ingredients of ESC were identified using liquid chromatography-mass spectrometry (LC-MS), and further screening. Next, network pharmacology analyses were performed to identify the core targets of ESC against ALF and further determine the potential mechanisms. Finally, in vivo experiments as well as in vitro experiments were conducted for further validation. The results revealed that 72 potential targets of ESC were identified using target prediction. The core targets were ALB, ERBB2, AKT1, MMP9, EGFR, PTPRC, MTOR, ESR1, VEGFA, and HIF1A. Next, KEGG pathway analysis showed that EGFR and PI3K-AKT signaling pathways could have been involved in ESC against ALF. ESC exhibits hepatic protective functions via anti-inflammatory, antioxidant, and anti-apoptotic effects. Therefore, the EGFR-ERK, PI3K-AKT, and NRF2/HO-1 signaling pathways could participate in the therapeutic effects of ESC on ALF.
Collapse
Affiliation(s)
- Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xiaomei Zheng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Qiqi Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Xinghong Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| |
Collapse
|
5
|
Shen LH, Fan L, Zhang Y, Zhu YK, Zong XL, Peng GN, Cao SZ. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022; 14:nu14235071. [PMID: 36501102 PMCID: PMC9737791 DOI: 10.3390/nu14235071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The placenta contains multiple biologically active substances, which exert antioxidation, anti-inflammatory, immunomodulatory, and delayed aging effects. Its extract can improve hepatic morphology and function: on the one hand, it can reduce liver interstitial collagen deposition, lipogenesis, and inflammatory cell infiltration and improve fibrosis; on the other hand, it can prevent hepatocellular degeneration by scavenging reactive oxygen species (ROS) and inhibiting inflammatory cytokine production, further improve hepatocyte apoptosis and necrosis, and promote hepatocyte regeneration, making it a promising liver-protective agent. Current research on placenta extract (PE) mainly focuses on treating a specific type of liver injury, and there are no systematic reports. Therefore, this review comprehensively summarizes the treatment reports of PE on liver injury and analyzes its mechanism of action.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-181-0901-7590
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying-Kun Zhu
- School of Agriculture & Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Human Placental Extract Delays In Vitro Cellular Senescence through the Activation of NRF2-Mediated Antioxidant Pathway. Antioxidants (Basel) 2022; 11:antiox11081545. [PMID: 36009264 PMCID: PMC9405396 DOI: 10.3390/antiox11081545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Senescent cells accumulate in the organs of aged animals and exacerbate organ dysfunction, resulting in age-related diseases. Oxidative stress accelerates cellular senescence. Placental extract, used in the alleviation of menopausal symptoms and promotion of wound healing and liver regeneration, reportedly protects against oxidative stress. In this study, we investigated the effects of human placental extract (HPE) on cellular senescence in normal human dermal fibroblasts (NHDFs) under oxidative stress conditions. We demonstrated that HPE delays the onset of cellular senescence. Next-generation sequencing analysis revealed that under oxidative stress conditions, HPE treatment enhanced the expression of the antioxidant genes CYGB, APOE, NQO1, and PTGS1. Further, HPE treatment under oxidative stress conditions increased the protein level of nuclear factor-erythroid factor 2-related factor 2 (NRF2)—a vital molecule in the antioxidant pathway—via post-transcriptional and/or post-translational regulations. These findings indicate that HPE treatment in NHDFs, under chronic oxidative stress, delays cellular senescence by mitigating oxidative stress via upregulation of the NRF2-mediated antioxidant pathway, and HPE treatment could potentially ameliorate skin-aging-associated damage, in vivo.
Collapse
|
7
|
Effect of Porcine Placental Extract Mixture on Alcohol-Induced Hepatotoxicity in Rats. Curr Issues Mol Biol 2022; 44:2029-2037. [PMID: 35678666 PMCID: PMC9164070 DOI: 10.3390/cimb44050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to examine the effect of porcine placenta extract mixture (pPEM, enzymatic/acidic extract = 1/3) on alcoholic hepatotoxicity after pPEM dosing with alcohol in rats. The experimental groups were normal, control, silymarin, three pPEM (590, 1771, and 2511 mg/kg/day, po), and silymarin (100 mg/kg/day, po) groups (n = 10). Alcoholic hepatotoxicity was caused by a liquid ethanol diet for 4 weeks. The effect of pPEM and silymarin on alcoholic hepatotoxicity was evaluated by serology, hepatic ADH and ALDH activities, and histopathological findings. After oral dosing with alcohol for 4 weeks, ALT and AST were significantly increased to 33.7 → 115.6 and 81.37 → 235.0 in the alcohol group, respectively. These levels were decreased significantly to 83.9 and 126.7 in the silymarin group and dose-dependently to 73.6–56.9 and 139.2–122.8 in all pPEM groups. Hepatic ADH and ALDH might have been increased in the control and not in the silymarin and pPEM groups for hepatic ADH. All pPEM groups exhibited no effects on hepatic ALDH except for the high pPEM group. Mild inflammation and fatty lesions were observed in the alcohol group and were attenuated in the silymarin and pPEM groups. As a results, the pPEM showed protective activities against alcoholic hepatotoxicity on the serological markers, hepatic ADH and ALDH, and pathological findings.
Collapse
|
8
|
Gromova OA, Torshin IY, Chuchalin AG, Maximov VА. Human placenta hydrolysates: from V.P. Filatov to the present day: Review. TERAPEVT ARKH 2022; 94:434-441. [DOI: 10.26442/00403660.2022.03.201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Works of V.P. Filatov and his school laid the foundation for the study and clinical use of human placenta hydrolysates (HPH). To date, the PubMed database contains more than 5,000 publications on basic and clinical research on HPH. Studies of the peptide composition of HPH, carried out using the methods of modern proteomics, have made it possible to propose a complex of molecular mechanisms of the action of HPH in various pathologies. The article discusses the effects of HPH on the treatment of liver diseases, atopic dermatitis, viral infections (herpes, COVID-19, viral hepatitis), iron overload and chronic fatigue syndrome. Stimulation of HPH regenerative capabilities of the body is important for accelerating and improving the quality of wound healing, treatment of diseases of the joints and the reproductive system.
Collapse
|
9
|
Fukushima N, Kakehi N, Tahara K, Watanabe T, Hirano E. Successful treatment of ascites accumulation and diarrhea associated with protein-losing enteropathy with oral equine placenta extract supplementation in a dog: A case report. Open Vet J 2022; 12:774-781. [PMID: 36589412 PMCID: PMC9789759 DOI: 10.5455/ovj.2022.v12.i5.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Protein-losing enteropathy (PLE) is characterized by leakage of serum proteins into the intestinal lumen, indicating hypoproteinemia. Immunosuppressive agents are the mainstay of treatment, but in many cases, patients are forced to taper off early owing to the induction of liver damage. Case Description An 8-year-old, non-spayed female Chihuahua presented with diarrhea and ascites effusion lasting 2 weeks. Based on the results of radiography and blood tests, a diagnosis of PLE was made. Prednisolone (3 mg/kg semel in die [SID]) and MitoMax (200 mg/day) were administered, but ascites accumulation and diarrhea did not improve. Thus, azathioprine (2 mg/kg/day) was added, but there was no improvement, and liver damage developed. The liver injury did not improve immediately, but diarrhea and ascites effusion improved after serum total protein and serum albumin levels increased after they had decreased. Subsequent tapering of prednisolone from 3 mg/kg SID to 1 mg/kg SID, combined with MitoMax (200 mg/day) and equine placenta extract (eqPE) (2 ml/day), resulted in no recurrence of ascites or diarrhea. Conclusion In canine PLE with prolonged diarrhea and ascites effusion, supplementation with eqPE may be considered a reasonable additional therapeutic strategy.
Collapse
Affiliation(s)
| | - Nobuhisa Kakehi
- Domestic Sales Department, Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Kentarou Tahara
- Medical Affairs Department, Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Tsuyuko Watanabe
- Medical Affairs Department, Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Eiichi Hirano
- Laennec Regenerative Medicine Research Center, Japan Bio Products Co., Ltd., Kurume, Japan,Corresponding Author: Eiichi Hirano. Laennec Regenerative Medicine Research Center, Japan Bio Products Co., Ltd., Kurume, Japan.
| |
Collapse
|
10
|
Igarashi K, Sugimoto K, Hirano E. Placental extract suppresses the formation of fibrotic deposits by tumor necrosis factor alpha and transforming growth factor beta-induced epithelial-mesenchymal transition in ARPE-19 cells. BMC Res Notes 2021; 14:407. [PMID: 34727968 PMCID: PMC8561846 DOI: 10.1186/s13104-021-05824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Epithelial–mesenchymal transition (EMT) is involved in the development of proliferative vitreoretinopathy (PVR) and subsequent fibrosis. Previously, we demonstrated that placental extract ameliorates fibrosis in a mouse model of non-alcoholic steatohepatitis. In this study, we evaluated whether placental extract influences EMT and fibrosis through cytokine-induced EMT in the retinal pigment epithelial cells, in vitro. Results Placental extract did not inhibit EMT, but it suppressed excessive mesenchymal reactions and the subsequent fibrosis. These results suggest that placental extract effectively ameliorates EMT-associated fibrosis in PVR. This beneficial effect could be partially attributed to the suppression of excessive mesenchymal reactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05824-0.
Collapse
Affiliation(s)
- Kyoko Igarashi
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Koji Sugimoto
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Eiichi Hirano
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan.
| |
Collapse
|
11
|
Rzhepakovsky I, Anusha Siddiqui S, Avanesyan S, Benlidayi M, Dhingra K, Dolgalev A, Enukashvily N, Fritsch T, Heinz V, Kochergin S, Nagdalian A, Sizonenko M, Timchenko L, Vukovic M, Piskov S, Grimm W. Anti-arthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X-ray microtomographic and histopathological analysis). Food Sci Nutr 2021; 9:5648-5669. [PMID: 34646534 PMCID: PMC8498067 DOI: 10.1002/fsn3.2529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Finding new, safe strategies to prevent and control rheumatoid arthritis is an urgent task. Bioactive peptides and peptide-rich protein hydrolyzate represent a new trend in the development of functional foods and nutraceuticals. The resulting tissue hydrolyzate of the chicken embryo (CETH) has been evaluated for acute toxicity and tested against chronic arthritis induced by Freund's full adjuvant (modified Mycobacterium butyricum) in rats. The antiarthritic effect of CETH was studied on the 28th day of the experiment after 2 weeks of oral administration of CETH at doses of 60 and 120 mg/kg body weight. Arthritis was evaluated on the last day of the experiment on the injected animal paw using X-ray computerized microtomography and histopathology analysis methods. The CETH effect was compared with the non-steroidal anti-inflammatory drug diclofenac sodium (5 mg/kg). Oral administration of CETH was accompanied by effective dose-dependent correction of morphological changes caused by the adjuvant injection. CETH had relatively high recovery effects in terms of parameters for reducing inflammation, inhibition of osteolysis, reduction in the inflammatory reaction of periarticular tissues, and cartilage degeneration. This study presents for the first time that CETH may be a powerful potential nutraceutical agent or bioactive component in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor Rzhepakovsky
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and SustainabilityStraubingGermany
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | - Svetlana Avanesyan
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Mehmet Benlidayi
- Faculty of DentistryDepartment of Oral and Maxillofacial SurgeryCukurova UniversitySarıçam/AdanaTurkey
| | - Kunaal Dhingra
- Division of PeriodonticsCentre for Dental Education and ResearchAll India Institute of Medical SciencesNew DelhiIndia
| | - Alexander Dolgalev
- Department of General Dentistry and Pediatric DentistryStavropol State Medical UniversityStavropolRussia
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | | | - Tilman Fritsch
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Volker Heinz
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | | | - Andrey Nagdalian
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marina Sizonenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Lyudmila Timchenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marko Vukovic
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Sergey Piskov
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Wolf‐Dieter Grimm
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
- Periodontology, School of Dental MedicineFaculty of HealthWitten/Herdecke UniversityWittenGermany
| |
Collapse
|
12
|
Neo S, Makiishi E, Fujimoto A, Hisasue M. Human placental hydrolysate promotes the long-term culture of hepatocyte-like cells derived from canine bone marrow. J Vet Med Sci 2020; 82:1821-1827. [PMID: 33132358 PMCID: PMC7804030 DOI: 10.1292/jvms.20-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Long-term culture of canine artificial hepatocytes has not been established. We hypothesized that human placental hydrolysate (hPH) may support the long-term
culture of differentiated hepatocyte-like cells. Canine bone marrow cells were cultured using modified hepatocyte growth medium supplemented with hPH.
Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical analysis for albumin, qualitative RT-PCR for cytochrome P450 1A1
(CYP1A1), hepatocyte growth factor (HGF), Cytokeratin 7 (CK7), CD90, CD44, and CD34, and functional analyses of CYP450 activity and low-density lipoprotein
(LDL) uptake were performed. Cultured hepatocyte-like cells were able to maintain hepatocyte characteristics, including morphology, albumin synthesis, CYP450
activity, and LDL uptake for 80 days. Thus, hPH may be a potential facilitator for the long-term culture of hepatocyte-like cells. Clinicopathologically, this
culture protocol of artificial hepatocytes will contribute to liver function evaluation.
Collapse
Affiliation(s)
- Sakurako Neo
- Laboratory of Clinical Diagnosis, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Eri Makiishi
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Ayumi Fujimoto
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
13
|
Alipour R, Motedayyen H, Sereshki N, Rafiee M, Alsahebfosul F, Pourazar A. Human Amniotic Epithelial Cells Affect the Functions of Neutrophils. Int J Stem Cells 2020; 13:212-220. [PMID: 32323513 PMCID: PMC7378904 DOI: 10.15283/ijsc19155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Objectives As a stem cell group, Human amniotic epithelial cells (HAECs) have numerous advantages over their embryonic and adult counterparts for therapeutic utility. They are closer to clinical applications compared to other stem cell types. Additionally, the anti-inflammatory and immunoregulatory properties of HAECs toward several immune cells have been shown previously. Nevertheless, despite the ever-increasing importance of neutrophils in the immune and non-immune processes, a few studies investigated the interaction of neutrophils and HAECs. To increase the current knowledge of HAECs immunology which is necessary for optimizing their future clinical applications, here we explored the effect of HAECs on two chief neutrophil functions; respiratory burst and phagocytosis. Methods and Results Freshly isolated human blood neutrophils were co-cultured with different number of HAECs for about 24 or 48 hours, then the oxidative burst and phagocytosis of stimulated neutrophils were assessed and compared. The results demonstrated a substantial elevation in the phagocytosis percentage, conversely a significant reduction in the oxidative burst of HAECs-cocultured neutrophils. These effects were dose-dependent, but did not show similar patterns. Likewise, the elongation of coculture period inversely influenced the HAECs-induced effects on the two neutrophil functions. Conclusions The present study, for the first time, investigated the HAECs-mediated effects on the two main neutrophil functions. The findings suggest that HAECs by enhancement of phagocytic ability and simultaneously, attenuation of oxidative burst capacity of neutrophils protect the fetus from both microbial treats and oxidative stress and their consequent inflammation; thus corroborate the current anti-inflammatory vision of HAECs.
Collapse
Affiliation(s)
- Razieh Alipour
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Motedayyen
- Department of Immunology, Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sereshki
- Department of Immunology, Asadabad School of Medical Science, Asadabad, Iran
| | - Mitra Rafiee
- Cellular and Molecular Research Center, Department of Immunology, Medical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Fereshteh Alsahebfosul
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Pourazar
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Fang P, Liang J, Jiang X, Fang X, Wu M, Wei X, Yang W, Hou W, Zhang Q. Quercetin Attenuates d-GaLN-Induced L02 Cell Damage by Suppressing Oxidative Stress and Mitochondrial Apoptosis via Inhibition of HMGB1. Front Pharmacol 2020; 11:608. [PMID: 32431618 PMCID: PMC7214928 DOI: 10.3389/fphar.2020.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 01/18/2023] Open
Abstract
High mobility group box-1 (HMGB1) plays an important role in various liver injuries. In the case of acute liver injury, it leads to aseptic inflammation and other reactions, and also regulates specific cell death responses in chronic liver injury. HMGB1 has been demonstrated to be a good therapeutic target for treating liver failure. Quercetin (Que), as an antioxidant, is a potential phytochemical with hepatocyte protection and is also considered to be an inhibitor of HMGB1. However, the mechanism of its hepatoprotective effects remains to be characterized. The present study explored whether the hepatoprotective effect of Que antagonizes HMGB1, and subsequent molecular signaling events. Our results indicated that Que protects L02 cells from d-galactosamine (d-GaLN)-induced cellular damage by reducing intracellular reactive oxygen species (ROS) production and apoptotic responses in the mitochondrial pathway. Immunofluorescence and Western blot assays showed that HMGB1 was involved in d-GaLN-induced L02 cell damage. Further research showed that after transfection with HMGB1 short hairpin RNA (shRNA), cell viability was improved, and intracellular ROS production and apoptosis were suppressed. When co-treated with Que, the expression of HMGB1 was decreased significantly, the expression of proteins in the corresponding signal pathway were further reduced, and the production of ROS and apoptosis were further suppressed. Molecular docking also indicated the binding of Que and HMGB1. Taken together, these results indicate that Que significantly improves d-GaLN-induced cellular damage by inhibiting oxidative stress and mitochondrial apoptosis via inhibiting HMGB1.
Collapse
Affiliation(s)
- Peng Fang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiajun Liang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuejiao Jiang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xian Fang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengli Wu
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoyi Wei
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Yang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weixin Hou
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qiuyun Zhang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Shin EH, Kim M, Hada B, Oh CT, Jang MJ, Kim JY, Han HJ, Kim DH, Choi BH, Kim BS. Effects of Human Placenta Extract (Laennec) on Ligament Healing in a Rodent Model. Biol Pharm Bull 2020; 42:1988-1995. [PMID: 31787714 DOI: 10.1248/bpb.b19-00349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rich in bioactive substances such as amino acids and peptides, Laennec (human placenta hydrolysate) has been widely used to control various types of musculoskeletal pain. However, the effects of Laennec on tendon and ligament injuries are not clearly understood. In the present study, Laennec was tested to identify its in vivo effects on ligament injury in an animal model and its in vitro effects on tendon-derived fibrocytes. A total of 99 Sprague Dawley rats were divided into the negative control (normal) group (n = 11) and the ligament injury group (n = 88). The ligament injury group was subdivided into normal saline-treated group, Laennec-treated group, polydeoxyribonucleotide-treated group, and 20% dextrose-treated group. Ligaments were collected at 1 week and 4 weeks after treatment. Histologic and biomechanical properties were analyzed. In vitro effects of Laennec and polydeoxyribonucleotide on fibrocytes were also analyzed. Although all other treatment groups showed increased inflammatory cells, the Laennec-treated group maintained cell counts and activated macrophage levels that were similar to the normal group. Unlike the saline-treated group and dextrose-treated group, the Laennec-treated group had low levels of degenerative changes at 4 weeks after treatment. Supportively, in vitro results showed that the Laennec-treated group had increased collagen type I, scleraxis (Scx) and tenomodulin (Tnmd) expression (p < 0.05). Our study demonstrates that Laennec treatment enhances wound healing of damaged ligament by suppressing immune responses and reducing degenerative changes of damaged ligament. In addition, we found that Laennec induces the gene expression of type I collagen, Scx and Tnmd in fibrocytes, suggesting that Laennec may facilitate regeneration of damaged ligaments. Therefore, we expect that Laennec can be a useful drug to treat injured ligament.
Collapse
Affiliation(s)
| | - Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital
| | - Binika Hada
- Department of Biomedical Sciences, Inha University, College of Medicine
| | - Chang Taek Oh
- Research and Development Center, Green Cross WellBeing Corporation
| | - Min Jung Jang
- Research and Development Center, Green Cross WellBeing Corporation
| | - Jeom Yong Kim
- Research and Development Center, Green Cross WellBeing Corporation
| | - Hae Jung Han
- Research and Development Center, Green Cross WellBeing Corporation
| | - Dong Hwan Kim
- Research and Development Center, Green Cross WellBeing Corporation
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University, College of Medicine
| | - Bom Soo Kim
- Department of Orthopedic Surgery, College of Medicine, Inha University
| |
Collapse
|
16
|
Enhanced effect of recombinant human soluble thrombomodulin by ultrasound irradiation in acute liver failure. Sci Rep 2020; 10:1742. [PMID: 32015385 PMCID: PMC6997189 DOI: 10.1038/s41598-020-58624-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The administration of recombinant human soluble thrombomodulin (rhsTM) significantly improves liver inflammation and increases the survival rate of patients with acute liver failure (ALF). However, rhsTM is dose-dependently correlated to the risk of bleeding. Recently, ultrasound (US) was found to enhance the effect of various drugs. Thus, the present study aimed to determine the enhancement effect of US irradiation on rhsTM in ALF. rhsTM (1 mg/kg) and US (1 MHz, 0.3 W/cm2) were irradiated to the liver of lipopolysaccharide/D-galactosamine-induced ALF mice model. The post-treatment aspartate aminotransferase, alanine aminotransferase, and high-mobility group box 1 levels were significantly lower in the rhsTM + US group than in the rhsTM alone group. Histopathological findings revealed significantly reduced liver injury and apoptosis in the rhsTM + US group. By contrast, US irradiation had no effect on rhsTM and TNF-α concentration in the liver tissue. In conclusion, US irradiation enhanced the effect of rhsTM in the ALF mice model. However, further studies must be conducted to determine the exact mechanism of such enhancement effect.
Collapse
|
17
|
Yamauchi A, Tone T, Sugimoto K, Seok Lim H, Kaku T, Tohda C, Shindo T, Tamada K, Mizukami Y, Hirano E. Porcine placental extract facilitates memory and learning in aged mice. Food Sci Nutr 2019; 7:2995-3005. [PMID: 31572593 PMCID: PMC6766592 DOI: 10.1002/fsn3.1156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 01/07/2023] Open
Abstract
Aging induces a decline in both memory and learning ability without predisposing an individual to diseases of the central nervous system, such as dementia. This decline can have a variety of adverse effects on daily life, and it can also gradually affect the individual and the people they are surrounded by. Since recent evidence indicated that placental extract has effects on brain function such as memory, we hypothesized that placental extract could ameliorate the age-associated reduction in cognitive function in aging. Here, we investigated the effect of new modified porcine placental extract (SD-F) on memory ability in aged mice at both the behavioral and molecular levels. Our results revealed that SD-F significantly enhanced memory ability in the object recognition and object location tasks in a dose-dependent manner in aged mice relative to controls. The numbers of Nissl-positive cells in the hippocampal cornu ammonis 3 (CA3) and dentate gyrus (DG) regions were increased in SD-F-treated aged mice relative to controls. RNA-seq analysis of the hippocampus of aged mice identified 542 differentially expressed genes, of which 216 were up-regulated and 326 were down-regulated in SD-F-treated mice relative to controls. Of the 216 up-regulated genes, we identified four characteristic genes directly related to memory, including early growth response protein 1 (Egr1), growth arrest and DNA-damage-inducible, beta (Gadd45b), NGFI-A binding protein 2 (Nab2), and vascular endothelial growth factor a (Vegfa). These results suggest that the efficacy of SD-F involves upregulation of these genes.
Collapse
Affiliation(s)
| | - Takahiro Tone
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| | - Koji Sugimoto
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| | | | | | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Takayuki Shindo
- Department of Cardiovascular ResearchShinshu University Graduate School of MedicineNaganoJapan
| | - Koji Tamada
- Department of Immunology, Graduate School of MedicineYamaguchi UniversityYamaguchiJapan
| | - Yoichi Mizukami
- Institute of Gene ResearchYamaguchi University Science Research CenterYamaguchiJapan
| | - Eiichi Hirano
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| |
Collapse
|
18
|
Lee TH, Park DS, Jang JY, Lee I, Kim JM, Choi GS, Oh CT, Kim JY, Han HJ, Han BS, Joh JW. Human Placenta Hydrolysate Promotes Liver Regeneration via Activation of the Cytokine/Growth Factor-Mediated Pathway and Anti-oxidative Effect. Biol Pharm Bull 2019; 42:607-616. [PMID: 30930420 DOI: 10.1248/bpb.b18-00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver regeneration is a very complex process and is regulated by several cytokines and growth factors. It is also known that liver transplantation and the regeneration process cause massive oxidative stress, which interferes with liver regeneration. The placenta is known to contain various physiologically active ingredients such as cytokines, growth factors, and amino acids. In particular, human placenta hydrolysate (hPH) has been found to contain many amino acids. Most of the growth factors found in the placenta are known to be closely related to liver regeneration. Therefore, in this study, we investigated whether hPH is effective in promoting liver regeneration in rats undergoing partial hepatectomy. We confirmed that cell proliferation was significantly increased in HepG2 and human primary cells. Hepatocyte proliferation was also promoted in partial hepatectomized rats by hPH treatment. hPH increased liver regeneration rate, double nucleic cell ratio, mitotic cell ratio, proliferating cell nuclear antigen (PCNA), and Ki-67 positive cells in vivo as well as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and hepatocyte growth factor (HGF). Moreover, Kupffer cells secreting IL-6 and TNF-α were activated by hPH treatment. In addition, hPH reduced thiobarbituric acid reactive substances (TBARs) and significantly increased glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Taken together, these results suggest that hPH promotes liver regeneration by activating cytokines and growth factors associated with liver regeneration and eliminating oxidative stress.
Collapse
Affiliation(s)
- Tae Hee Lee
- Hoseo Toxicological Research Center, Hoseo University
| | - Dong Sun Park
- Department of Biology Education, Korea National University of Education
| | - Ja Young Jang
- Hoseo Toxicological Research Center, Hoseo University
| | - Isaac Lee
- Hoseo Toxicological Research Center, Hoseo University
| | - Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Gyu Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Chang Taek Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Jeom Yong Kim
- Research & Development center, Green Cross WellBeing Corporation
| | - Hae Jung Han
- Research & Development center, Green Cross WellBeing Corporation
| | - Beom Seok Han
- Hoseo Toxicological Research Center, Hoseo University
| | - Jae Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
19
|
Yamauchi A, Kamiyoshi A, Sakurai T, Miyazaki H, Hirano E, Lim HS, Kaku T, Shindo T. Development of a mouse iron overload-induced liver injury model and evaluation of the beneficial effects of placenta extract on iron metabolism. Heliyon 2019; 5:e01637. [PMID: 31193082 PMCID: PMC6515419 DOI: 10.1016/j.heliyon.2019.e01637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic iron deposition is seen in cases of chronic hepatitis and cirrhosis, and is a hallmark of a poorer prognosis. Iron deposition is also found in non-alcoholic steatohepatitis (NASH) patients. We have now developed a mouse model of NASH with hepatic iron deposition by combining a methione- and choline-deficient (MCD) diet with an iron-overload diet. Using this model, we evaluated the effects of human placenta extract (HPE), which has been shown to ameliorate the pathology of NASH. Four-week-old male C57BL/6 mice were fed the MCD diet with 2% iron for 12 weeks. In liver sections, iron deposition was first detected around the portal vein after 1 week. From there it spread throughout the parenchyma. Biliary iron concentrations were continuously elevated throughout the entire 12-week diet. As a compensatory response, the diet caused elevation of serum hepcidin, which accelerates excretion of iron from the body. Accumulation of F4/80-positive macrophages was detected within the sinusoids from the first week onward, and real-time PCR analysis revealed elevated hepatic expression of genes related inflammation and oxidative stress. In the model mice, HPE treatment led to a marked reduction of hepatic iron deposition with a corresponding increase in biliary iron excretion. Macrophage accumulation was much reduced by HPE treatment, as was the serum oxidation-reduction potential, an index of oxidative stress. These data indicate that by suppressing inflammation, oxidative stress and iron deposition, and enhancing iron excretion, HPE effectively ameliorates iron overload-induced liver injury. HPE administration may thus be an effective strategy for treating NASH.
Collapse
Affiliation(s)
- Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| |
Collapse
|