1
|
Shi S, Ou X, Liu C, Wen H, Ke J. Research progress of HIF-1a on immunotherapy outcomes in immune vascular microenvironment. Front Immunol 2025; 16:1549276. [PMID: 39981236 PMCID: PMC11839635 DOI: 10.3389/fimmu.2025.1549276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α) plays a key role in facilitating the adaptation of cells to hypoxia, profoundly influencing the immune vascular microenvironment (IVM) and immunotherapy outcomes. HIF-1α-mediated tumor hypoxia drives angiogenesis, immune suppression, and extracellular matrix remodeling, creating an environment that promotes tumor progression and resistance to immunotherapies. HIF-1α regulates critical pathways, including the expression of vascular endothelial growth factor and immune checkpoint upregulation, leading to tumor-infiltrating lymphocyte dysfunction and recruitment of immunosuppressive cells like regulatory T cells and myeloid-derived suppressor cells. These alterations reduce the efficacy of checkpoint inhibitors and other immunotherapies. Recent studies highlight therapeutic strategies that target HIF-1α, such as the use of pharmacological inhibitors, gene editing techniques, and hypoxia-modulating treatments, which show promise in enhancing responses to immunotherapy. This review explores the molecular mechanisms of action of HIF-1α in IVM, its impact on immunotherapy resistance, as well as potential interventions, emphasizing the need for innovative approaches to circumvent hypoxia-driven immunosuppression in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Ke
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Farinella R, Erbi I, Bedini A, Donato S, Gentiluomo M, Angelucci C, Lupetti A, Cuttano A, Moscuzza F, Tuoni C, Rizzato C, Ciantelli M, Campa D. Polymorphic variants in Sweet and Umami taste receptor genes and birthweight. Sci Rep 2021; 11:4971. [PMID: 33654187 PMCID: PMC7925569 DOI: 10.1038/s41598-021-84491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022] Open
Abstract
The first thousand days of life from conception have a significant impact on the health status with short, and long-term effects. Among several anthropometric and maternal lifestyle parameters birth weight plays a crucial role on the growth and neurological development of infants. Recent genome wide association studies (GWAS) have demonstrated a robust foetal and maternal genetic background of birth weight, however only a small proportion of the genetic hereditability has been already identified. Considering the extensive number of phenotypes on which they are involved, we focused on identifying the possible effect of genetic variants belonging to taste receptor genes and birthweight. In the human genome there are two taste receptors family the bitter receptors (TAS2Rs) and the sweet and umami receptors (TAS1Rs). In particular sweet perception is due to a heterodimeric receptor encoded by the TAS1R2 and the TAS1R3 gene, while the umami taste receptor is encoded by the TAS1R1 and the TAS1R3 genes. We observed that carriers of the T allele of the TAS1R1-rs4908932 SNPs showed an increase in birthweight compared to GG homozygotes Coeff: 87.40 (35.13-139.68) p-value = 0.001. The association remained significant after correction for multiple testing. TAS1R1-rs4908932 is a potentially functional SNP and is in linkage disequilibrium with another polymorphism that has been associated with BMI in adults showing the importance of this variant from the early stages of conception through all the adult life.
Collapse
Affiliation(s)
| | - Ilaria Erbi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Alice Bedini
- Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126, Pisa, Italy
| | - Sara Donato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Claudia Angelucci
- Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126, Pisa, Italy
| | - Antonella Lupetti
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Armando Cuttano
- Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126, Pisa, Italy
| | - Francesca Moscuzza
- Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126, Pisa, Italy
| | - Cristina Tuoni
- Division of Neonatology, Santa Chiara Hospital, Via Roma, 67, 56126, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|