1
|
Lee SM, Ryu HW, Kim HG, Jo YH, Park KJ, Lee SU, Oh ES, Lee SW, Choi S, Li WY, Hwang BY, Oh SR. Anti-Inflammatory Dimeric and Trimeric Flavonoids from the Roots of Pistacia weinmannifolia. JOURNAL OF NATURAL PRODUCTS 2025; 88:314-321. [PMID: 39931765 DOI: 10.1021/acs.jnatprod.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
As part of an ongoing search for new anti-inflammatory agents from medicinal plants, five new dimeric and trimeric flavonoids (1-5) were isolated from the roots of Pistacia weinmannifolia. The structures of pistachalcone A (1), pistachalcone B (2), pistaflavanone A (3), pistachalcone C (4), and pistachalcone D (5) were elucidated by the analysis of spectroscopic data. The known compounds rhuschalcone II (6), rhuschalcone VI (7), and pauferrol B (8) were also isolated and identified. Our in vitro analysis found that compounds isolated from P. weinmannifolia root extract exert anti-inflammatory effects in phorbol myristate acetate (PMA)-induced NCI-H292 airway epithelial cells by the suppression of expression levels such as interleukin-8 (IL-8) and mucin 5AC (MUC5AC), which are closely related to the pulmonary inflammatory response in the pathogenesis of COPD. Therefore, these dihydrochalcone derivatives may have value as new starting materials for the development of drug candidates against COPD.
Collapse
Affiliation(s)
- Seong Mi Lee
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
- Herbal Medicine Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Korea
| | - Hyung Won Ryu
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Hyoung-Geun Kim
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Yang Hee Jo
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Eun Sol Oh
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center and Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheungbuk-do 28116, Republic of Korea
| |
Collapse
|
2
|
Oh ES, Lee JW, Song YN, Kim MO, Lee RW, Kang MJ, Lee J, Yun SH, Hong ST, Ro H, Lee SU. Tangeretin inhibits airway inflammatory responses by reducing early growth response 1 (EGR1) expression in mice exposed to cigarette smoke and lipopolysaccharide. Heliyon 2024; 10:e39797. [PMID: 39553588 PMCID: PMC11564960 DOI: 10.1016/j.heliyon.2024.e39797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tangeretin, a natural polymethoxyflavone compound, possesses potent anti-inflammatory activity that improves respiratory inflammation in chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms underlying the anti-COPD effects of tangeretin remain unclear. In this study, we aimed to investigate the key molecular mechanisms by which tangeretin suppresses COPD-related inflammatory responses. Methods We conducted the investigation in phorbol-12-myristate-13-acetate (PMA)-stimulated human airway epithelial cells (in vitro) and cigarette smoke (CS)/lipopolysaccharide (LPS)-exposed mice (in vivo). Results Tangeretin decreased the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and mucin 5AC (MUC5AC), by suppressing early growth response 1 (EGR1) expression in vitro. Tangeretin and EGR1 small interfering ribonucleic acid (siRNA) combination showed a synergistic reduction in MUC5AC and TNF-α secretion. Tangeretin administration significantly inhibited the levels of reactive oxygen species (ROS) production, elastase activity, TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) secretion, and macrophage and neutrophil numbers in the bronchoalveolar lavage fluid of CS/LPS-exposed mice. Tangeretin also prevented CS/LPS-induced abnormal pathological changes and excessive MUC5AC and EGR1 expression in lung tissue. Conclusion Comprehensively, tangeretin inhibits the lung inflammatory response associated with COPD by reducing EGR1 expression in PMA-induced human epithelial cells and in a CS/LPS-stimulated mouse model. This study shows that tangeretin has anti-COPD properties and can be a promising alternative (or complementary) treatment for inflammatory lung disease.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, 266, Munhwa-Ro, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
3
|
Yao HB, Almoallim HS, Alharbi SA, Feng H. Anti-Allergic and Anti-inflammatory Effects of Bakuchiol on Ovalbumin-Induced Allergic Rhinitis in Mice. Appl Biochem Biotechnol 2024; 196:3456-3470. [PMID: 37665561 DOI: 10.1007/s12010-023-04675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Allergic rhinitis (AR) is a prevalent inflammatory disease primarily affecting the nasal mucosa and is caused by allergies. The common symptoms of AR include rhinorrhea, sneezing, itchy nose, congestion, teary eyes, and nasal rubbings. The present study assessed the beneficial properties of bakuchiol on OVA-induced AR in mice via the regulation of inflammatory responses. AR was induced by injecting (i.p.) OVA (50 µg) and aluminum hydroxide (1 mg) into mice at various time intervals. The bakuchiol treatment was done at dosages of 10 and 20 mg/kg with dexamethasone (2.5 mg/kg) as a positive control. The body weight and nasal symptoms were measured on the day of the last OVA challenge. For in vitro tests, mouse splenocytes were isolated, sensitized with 20 µL OVA, and then treated with 10 µM bakuchiol. The levels of pro-inflammatory cytokines, immunoglobulins, histamine, leukotriene C4 (LTC-4), and prostaglandin D2 (PGD2) were assayed using the corresponding assay kits. The assay kits were also used to analyze the status of oxidative stress markers. The Th1/Th2 cell proportion was assessed using flow cytometry. The bakuchiol (10 and 20 mg/kg) treatment reduced the nasal symptoms in AR mice. Bakuchiol decreased the levels of IL-4, IL-5, IL-13, Igs (IgE and IgG1), histamine, IL-10, IL-33, and TNF-α in AR mice. Bakuchiol also reduced PGDA and LTC-4 levels in the NLF of AR mice. The ROS and MDA levels were decreased, whereas boosted SOD activity was observed in the bakuchiol-treated AR mice. The eosinophil count was decreased in the nasal tissues of bakuchiol-treated AR mice. Bakuchiol also influenced the Th1 and Th2 cell proportions in AR mice. The present findings suggest that bakuchiol is effective against OVA-mediated allergic and inflammatory responses in AR mice through its strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Han Bing Yao
- Department of Otolaryngology-Head and Neck Surgery, The Fourth Hospital of Changsha, Changsha, 410006, China
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Hui Feng
- Department of Otolaryngology, Ankang Central Hospital, Ankang, 725000, China.
| |
Collapse
|
4
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Lee JW, Kim EN, Jeong GS. Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis. Biomol Ther (Seoul) 2024; 32:25-37. [PMID: 38148551 PMCID: PMC10762282 DOI: 10.4062/biomolther.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 12/28/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
7
|
Kim MO, Lee JW, Lee JK, Song YN, Oh ES, Ro H, Yoon D, Jeong YH, Park JY, Hong ST, Ryu HW, Lee SU, Lee DY. Black Ginseng Extract Suppresses Airway Inflammation Induced by Cigarette Smoke and Lipopolysaccharides In Vivo. Antioxidants (Basel) 2022; 11:antiox11040679. [PMID: 35453364 PMCID: PMC9025275 DOI: 10.3390/antiox11040679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor that can induce airway enlargement, airway obstruction, and airway mucus hypersecretion. Although studies have shown that Korean black ginseng extract (BGE) has potent anti-inflammatory and antioxidant activities, the CS-induced inflammatory responses and molecular mechanisms are yet to be examined. The aim of this study was to examine the effect of BGE on the airway inflammatory response and its molecular mechanisms, using CS/lipopolysaccharides (LPS)-exposed animals and PMA-stimulated human airway epithelial NCI-H292 cells. The results show that BGE inhibited the recruitment of immune cells and the release of inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, elastase, and reactive oxygen species (ROS) in the airways of CS/LPS-exposed animals. BGE inhibited mucus secretion and the expression of Mucin 5AC (MUC5AC). Furthermore, BGE exhibited an anti-inflammatory effect by downregulating a signaling pathway mediated by transforming growth factor-β-activated kinase (TAK) 1, an important protein that accelerates inflammation by cigarette smoke (CS). Overall, the findings show that BGE inhibits lung inflammation and mucus secretion by decreasing the activation of TAK1 both in human epithelial cells and in CS/LPS-exposed animals, and could be a potential adjuvant in the treatment and prevention of airway inflammatory diseases caused by airway irritants such as CS.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Korea;
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunju Ro
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
| | - Yun-Hwa Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ji-Yoon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| |
Collapse
|
8
|
Dou T, Wang J, Liu Y, Jia J, Zhou L, Liu G, Li X, Han M, Lin J, Huang F, Chen X. A Combined Transcriptomic and Proteomic Approach to Reveal the Effect of Mogroside V on OVA-Induced Pulmonary Inflammation in Mice. Front Immunol 2022; 13:800143. [PMID: 35371026 PMCID: PMC8972588 DOI: 10.3389/fimmu.2022.800143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Mogroside V is a bioactive ingredient extracted from the natural food Siraitia grosvenorii which possesses functions that stimulate lung humidification and cough relief activities, but its underlying mechanisms were rarely studied. To estimate its potential protective effect on ovalbumin (OVA)-induced pulmonary inflammation and understand its system-wide mechanism, integrated omics was applied in this study. Mogroside V effectively reduced the levels of IgE, TNF-α, and IL-5 in OVA-induced mice. The results of RNA-seq and data-independent acquisition proteomics approach revealed that 944 genes and 341 proteins were differentially expressed in the normal control group (NC) and ovalbumin-induced control group (OC) and 449 genes and 259 proteins were differentially expressed between the OC and the group treated with 50 mg/kg mogroside V (MV). After a combined analysis of the transcriptome and the proteome, 93 major pathways were screened, and we discovered that mogroside V exerts an anti-inflammation effect in the lung via NF-κB and JAK-STAT, both of which are among the signaling pathways mentioned above. In addition, we found that the key regulatory molecules (Igha, Ighg1, NF-κB, Jak1, and Stat1) in the two pathways were activated in inflammation and inhibited by mogroside V. Thus, mogroside V may be the main bioactivity component in S. grosvenorii that exerts lung humidification and cough relief effects.
Collapse
Affiliation(s)
- Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Juan Wang
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiangang Jia
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiaxun Lin
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Fengxiang Huang
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Xu Chen,
| |
Collapse
|
9
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Azman S, Sekar M, Bonam SR, Gan SH, Wahidin S, Lum PT, Dhadde SB. Traditional Medicinal Plants Conferring Protection Against Ovalbumin-Induced Asthma in Experimental Animals: A Review. J Asthma Allergy 2021; 14:641-662. [PMID: 34163178 PMCID: PMC8214026 DOI: 10.2147/jaa.s296391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/16/2021] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract in which the numerous immune cells, including eosinophils, neutrophils, macrophages, T-lymphocytes, mast cells and epithelial lining play key roles. The numerous anti-asthmatic drugs are available in modern medicine to treat asthma, but they have several disadvantages, including side effects and the cost variations, which compromise treatment compliance. The literature review reveals that traditional herbal medicines have good potential as alternative treatment and management for asthma. However, communities hesitated to use the traditional herbal medicines due to lack of established mechanism of action about their anti-asthmatic potential. The present review aimed to summarise the information stated in the literature about the potential effect of traditional medicinal plants (TMPs) conferring protection against ovalbumin (OVA)-induced asthma model. The literature search was conducted in database like PubMed, Scopus, Google Scholar and ScienceDirect. After screening through the literature from 2011 to date, a total of 27 medicinal plants and two polyherbal extracts have been reported to be used as traditional herbal medicines and also utilised to be tested against OVA-induced asthma, were included. We found them to be an important alternative source of treatment for asthma, since some have comparable efficacies with drugs commonly used in the modern system against asthma. All the reported medicinal plants confirmed their traditional use against asthma or its related inflammation. The present review provides faith in traditional information and also offers new insight into the potential of natural products against asthma.
Collapse
Affiliation(s)
- Shazalyana Azman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
- Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway Selangor Darul Ehsan, 47500, Malaysia
| | - Suzana Wahidin
- Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | |
Collapse
|
11
|
Scrophularia koraiensis Nakai Attenuates Allergic Airway Inflammation via Suppression of NF-κB and Enhancement of Nrf2/HO-1 Signaling. Antioxidants (Basel) 2020; 9:antiox9020099. [PMID: 31991647 PMCID: PMC7070852 DOI: 10.3390/antiox9020099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Scrophularia koraiensis Nakai (Scrophulariaceae) is a medicinal herb that grows in Korea and which has been widely used to treat fever, edema, neuritis and laryngitis. Hence, we evaluated the anti-inflammatory and antioxidant effects of the ethanol extract (SKE) of S. koraiensis Nakai in an ovalbumin (OVA)-induced mouse model. We injected 20 μg of OVA with 2 mg of aluminum on day 0 and day 14 to induce allergic airway inflammation in six-week-old BALB/c mice, and mice were challenged with 1% OVA by nebulization for 1 h on days 21, 22, and 23. SKE was orally administered at 20 mg/kg and 40 mg/kg from day 18 to 23, and its effects were compared with those of montelukast treatment. SKE significantly reduced proinflammatory cytokines, inflammatory cell counts, immunoglobulin-E, and airway hyperresponsiveness during the OVA-induced allergic airway inflammation model; it also reduced airway inflammation and mucus production. In addition, SKE reduced the OVA-induced nuclear factor kappa B (NF-κB) phosphorylation in lung tissues while enhancing nuclear factor erythroid-derived 2-related factor (Nrf-2) and heme oxygenase-1 (HO-1) expression. In conclusion, SKE showed the protective effects on OVA-induced allergic airway inflammation via the suppression of NF-κB phosphorylation and the enhancement of the Nrf2/HO-1 signaling pathway. These results indicate that SKE is a potential therapeutic agent for allergic airway inflammation.
Collapse
|