1
|
Wei D, Hu J, Wu X, Li Y, Wu W, Xu Y, Wang X, Luo Y. Carbohydrate-active enzyme-catalyzed stereoselective glycosylation of complex natural product glycosides. Enzyme Microb Technol 2025; 185:110589. [PMID: 39864143 DOI: 10.1016/j.enzmictec.2025.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys). ASP OleD, a mutant of glycosyltransferase OleD from Streptomyces antibioticus, catalyzed an explicit β-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the representative plant-derived complex natural product glycosides, protodioscin (1) and epimedin C (2), producing two complex glycoside derivatives. The glycoside hydrolase Δ27ThCGT, a truncated cyclodextrin glucanotransferase from Thermoanaerobacter sp., exhibited a definite α-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the glycosides 1, 2, and astragaloside IV (3), generating four complex glycoside derivatives. The chemical structures and absolute configurations of these enzymatic glycosylation products were determined by analysis of their HRMS and NMR data. The present study expands the enzymatic glycosylation diversification of complex glycosides catalyzed by the CAZys.
Collapse
Affiliation(s)
- Daijing Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu 611130, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
2
|
Gao R, Wu Z, Dang W, Yang T, Chen J, Cheng H, Cui J, Lin L, Shen X, Li F, Yan J, Gao Y, Gao Y, Ma Z. Th1/Th2 Immune Imbalance in the Spleen of Mice Induced by Hypobaric Hypoxia Stimulation and Therapeutic Intervention of Astragaloside IV. Int J Mol Sci 2025; 26:2584. [PMID: 40141225 PMCID: PMC11942621 DOI: 10.3390/ijms26062584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
This study aims to establish a hypobaric hypoxia-induced immune injury model and investigate the intervention and therapeutic effects of Astragaloside IV (AS-IV). This study simulated hypobaric hypoxia stimulation in mice at an altitude of 7000 m on a plateau for 1, 3, 5, and 7 days. HE staining and transcriptomic analysis were performed on mouse spleens. In addition, AS-IV was selected for intervention in prevention and treatment, and validated by flow cytometry, ELISA, and Q-PCR. The results showed that under simulated hypoxic conditions at an altitude of 7000 m for 5 days, the peripheral blood lymphocytes of mice decreased, and the CD45+ cells, CD3+ T cells, and CD3+CD4+ T cells, and CD4+/CD8+ cell ratio in the spleen all decreased. AS-IV can significantly alleviate pathological damage to the spleen, decrease serum levels of IL-2 and IL-6, increase IL-4 and IL-10, and raise CD3+CD4+ T cells and the CD4+/CD8+ cell ratio in peripheral blood and the spleen, while increasing CD4+IFN-γ+cells in spleen, reducing ROS and apoptosis levels in spleen, and increasing the content of relevant mRNA in the Th1/Th2 cell pathway. In summary, simulating hypoxia at an altitude of 7000 m for 5 days can establish a stable hypobaric hypoxic immune injury model, and AS-IV can effectively alleviate hypobaric hypoxic immune injury.
Collapse
Affiliation(s)
- Rong Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (R.G.); (W.D.); (J.C.); (H.C.); (F.L.)
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Zhenhui Wu
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, China
| | - Wanyun Dang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (R.G.); (W.D.); (J.C.); (H.C.); (F.L.)
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Tingyu Yang
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (R.G.); (W.D.); (J.C.); (H.C.); (F.L.)
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Hongbo Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (R.G.); (W.D.); (J.C.); (H.C.); (F.L.)
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Jialu Cui
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Lin
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shen
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Fangyang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (R.G.); (W.D.); (J.C.); (H.C.); (F.L.)
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Jiayi Yan
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yehui Gao
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| | - Zengchun Ma
- Beijing Institute of Radiation Medicine, Beijing 100859, China; (Z.W.); (T.Y.); (J.C.); (L.L.); (X.S.); (J.Y.); (Y.G.)
| |
Collapse
|
3
|
Guo C, Li Y, Yang R, Xie M, Chen X, Che Z, Wang Z, Zhong B, Luo Y, Leng XM. Astragaloside IV attenuates glucocorticoid-induced osteoclastogenesis and bone loss via the MAPK/NF-κB pathway. BMC Complement Med Ther 2025; 25:48. [PMID: 39934767 DOI: 10.1186/s12906-025-04793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is a bioactive saponin extracted from Radix Astragali, and it is reported to promote osteoblast differentiation while inhibiting osteoclastogenesis. However, the mechanism of AS-IV in glucocorticoid-induced osteoclastogenesis (GIO) remains undetermined. Herein, we examined the influence of AS-IV on GIO and bone loss. METHODS RAW264.7 cells were incubated with dexamethasone (Dex) alone or Dex and receptor activator of nuclear factor-B ligand (RANKL) (Dex and RANKL) for 2 days, and then treated with Dex or Dex and RANKL through AS-IV for the timeframes indicated. Following, mice were intraperitoneally administered with an intermediate-acting glucocorticoid, methylprednisolone (MP), or MP and AS-IV for 6 weeks. RESULTS AS-IV significantly decreased Dex-induced osteoclast nucleus and area, however, it did not impact the number of Dex-induced osteoclasts in RAW264.7 cells. AS-IV also significantly decreased the osteoclastic marker protein expressions in Dex-induced RAW264.7 cells with concentration of dose dependent fashion. Additionally, AS-IV promoted p38 phosphorylation (p-) and p-p65 translocation to the nucleus, while inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) (p-ERK) and inhibitor of Nuclear factor κB (NF-κB) (p-IκB) levels. However, the AS-IV-mediated action on p-MAPK, p-NF-κB, and osteoclastic marker expressions were reversed by MAPK or IκB inhibitor in Dex-induced RAW264.7 cells. Furthermore, our in vivo evaluation revealed that AS-IV also attenuated the MP-mediated bone loss, and suppressed osteoclastogenesis. CONCLUSIONS This study demonstrates that AS-IV inhibits GIO and attenuates bone loss via the MAPK/NF-κB pathway. This also suggested that AS-IV could be a potential promising therapeutic agent for glucocorticoid-triggered bone loss.
Collapse
Affiliation(s)
- Chun Guo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Yangyang Li
- Jiaozuo Center for Disease Control and Prevention, 500 Shijixi Road, Jiaozuo, 454150, Henan Province, China
| | - Ruijuan Yang
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Mingzhang Xie
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Xiangfeng Chen
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Zhiqun Che
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
| | - Zhixia Wang
- First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan Province, China
| | - Bin Zhong
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China.
| | - Yanhong Luo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China.
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
4
|
Tian F, Sun S, Ge Z, Ge Y, Ge X, Shi Z, Qian X. Understanding the Anticancer Effects of Phytochemicals: From Molecular Docking to Anticarcinogenic Signaling. J Nutr 2025; 155:431-444. [PMID: 39581266 DOI: 10.1016/j.tjnut.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
As nontraditional nutrients, the biological activity of phytochemicals have been extensively studied for their antioxidant, anti-inflammatory, and apoptosis-promoting effects in various diseases. The general anticancer benefits of phytochemicals have been demonstrated in both basic researches and clinical trials. However, researchers understanding of how phytochemicals target cancer-related signaling pathways is still in its infancy. Molecular docking simulation analyses have yielded a large amount of cellular target molecules of phytochemicals. Herein, we review the potential signaling pathways that may be involved in the phytochemical-driven cancer benefits. We expect these findings to help in the design of potential cancer treatments designed by manipulating the binding modes and sites of these plant chemicals.
Collapse
Affiliation(s)
- Fuwei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Yu K, Tang Y, Wang C, Liu W, Hu M, Hu A, Kuang Y, Zacksenhaus E, Yu XZ, Xiao X, Ben-David Y. The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity. Int J Mol Sci 2024; 25:13426. [PMID: 39769192 PMCID: PMC11676164 DOI: 10.3390/ijms252413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo. Docking analysis demonstrated binding of these four compounds to FLI1, resulting in downregulation of its targets, induction of apoptosis, differentiation, and suppression of cell proliferation. Chemical composition analysis identified other compounds previously known having anti-tumor activity independent of the FLI1 blockade. Among these, Astragaloside-A (As-A) has marginal effect on cells in culture, but strongly inhibits leukemogenesis in vivo, likely through improvement of anti-tumor immunity. Indeed, both IDO1 and TDO2 were identified as targets of As-A, leading to suppression of tryptophane-mediated Kyn production and leukemia suppression. Moreover, As-A interacts with histamine decarboxylase (HDC), leading to suppression of anti-inflammatory genes TNF, IL1B/IL1A, TNFAIP3, and CXCR2, but not IL6. These results implicate HDC as a novel immune checkpoint mediator, induced in the tumor microenvironment to promote leukemia. Functional analysis of AM components may allow development of combination therapy with optimal anti-leukemia effect.
Collapse
Affiliation(s)
- Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yao Tang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Maoting Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
6
|
Zhang W, Zhang K, Feng Y, Zhang G. Global research trends in traditional Chinese medicine therapy for acute leukemia: a comprehensive visualization and bibliometric analysis. Hematology 2024; 29:2427896. [PMID: 39530384 DOI: 10.1080/16078454.2024.2427896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The application of traditional Chinese medicine (TCM) therapy to acute leukemia has been intensively investigated. However, the bibliometric analysis in this field has not been performed. This bibliometric study aimed to comprehensively analyze the research trends and active areas of TCM therapy for acute leukemia from 2000 to 2023. METHODS We searched articles and reviews published between 2000 and 2023 that discussed TCM in acute leukemia from the Web of Science Core Collection (WoSCC). Knowledge mapping and bibliometric analysis were conducted using VOSviewer, CiteSpace software, and R-bibliometrix. RESULTS A total of 1,099 articles were included, with China, the United States, and Korea contributing the most papers. Most papers were published in the Journal of Ethnopharmacology. Meanwhile, China saw a steady increase in the number of publications. The three leading institutions that made outstanding contributions were the China Medical University, the Chinese Academy of Sciences, and the China Academy of Chinese Medical Sciences. Efferth Thomas, Liu Wei, and Liu Jie were the top three productive authors, with Efferth T receiving the most co-citations. The most frequently cited reference was Shen ZX (1997). In the analysis of keywords co-occurrence, 'survival,' 'risk factors,' 'nanoparticles,' and 'metabolism' are the active research topics. CONCLUSION This bibliometric study provides researchers with a comprehensive overview and significant value in understanding the development of TCM in acute leukemia treatment.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department Electrophysiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Kaili Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guangxi, People's Republic of China
| | - Yuqing Feng
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| | - Gaofeng Zhang
- Department of Medical Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Sha Z, Liu W, Jiang T, Zhang K, Yu Z. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev 2024; 40:1438-1455. [PMID: 36971224 DOI: 10.1080/02648725.2023.2194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Bone marrow mesenchymal stem cells (BMECs)-derived exosomes (MSC-Exo) can improve acute myocardial infarction (AMI). Astragaloside IV (AS-IV) has also been reported to have cardioprotective pharmacological effects. However, it is not entirely clear whether AS-IV can improve AMI by inducing MSC-Exo. BMSCs and MSC-Exo were isolated and identified, and we also established the AMI rat model and the OGD/R model with H9c2 cells. After MSC-Exo or AS-IV-mediated MSC-Exo treatment, cell angiogenesis, migration, and apoptosis were evaluated by tube formation, wound healing, and TUNEL staining. The cardiac function of the rats was measured by echocardiography. The pathological changes and collagen deposition in rats were also assessed with Masson and Sirius red staining. The levels of α-SMA, CD31 and inflammatory factors were determined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In vitro, AS-IV-mediated MSC-Exo can significantly enhance the angiogenesis and migration of H9c2 cells induced by OGD/R, and significantly reduce their apoptosis. In vivo, AS-IV-mediated MSC-Exo can improve the cardiac function of rats, and attenuate pathological damage and collagen deposition in AMI model rats. In addition, AS-IV-mediated MSC-Exo can also promote angiogenesis and reduce inflammatory factors in rats with AMI. AS-IV-stimulated MSC-Exo can improve myocardial contractile function, myocardial fibrosis and angiogenesis, reduce inflammatory factors and induce apoptosis in rats after AMI.
Collapse
Affiliation(s)
- Zhongxin Sha
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Kaiping Zhang
- Department of Cardiology, Guihang 302 Hospital, Anshun, P.R. China
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
8
|
Kong C, Sun J, Hu X, Li G, Wu S. A tumor targeted nano micelle carrying astragaloside IV for combination treatment of bladder cancer. Sci Rep 2024; 14:17704. [PMID: 39085255 PMCID: PMC11291986 DOI: 10.1038/s41598-024-66010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective agents for tumor immunotherapy. However, their clinical effectiveness is unsatisfactory due to off-target effects and a suppressive immune microenvironment. This study developed a nanodrug delivery system for bladder cancer (BCa) using PCL-MPEG and PCL-PEG-CHO to synthesize internal hydrophobic and external hydrophilic micelles (PP) that encapsulated water-insoluble astragaloside IV (PPA). The aldehyde group on the surface of PPA reacted with the amino group of aPD-L1, allowing the decoration of this antibody on the surface of the micelles. The resultingPPA@aPD-L1effectively piggybacked astragaloside IV and aPD-L1 antibody. These findings suggest that PPA@aPD-L1 is relatively stable in circulation and efficiently binds to BCa cells with the aid of aPD-L1. Additionally, this strategy prolongs the drug's retention time in tumors. Compared to PBS, PP, and PPA with PPA + aPD-L1 groups, PPA@aPD-L1significantly prolonged the survival of mice with BCa and reduced tumor volume. Mechanistic studies showed that PPA inhibited the NF-κB and STAT3 signaling pathways in tumor cells. Additionally, PPA@aPD-L1increased IFN-γ and decreased IL-10 expression in bladder tumors, affecting the number and type of intratumorally infiltrating T cells. Our study presents a simple and effective drug delivery system that combines herbal monomers with ICIs. It has demonstrated a potent ability to suppress tumor growth and holds potential for future applications.
Collapse
Affiliation(s)
- Chenfan Kong
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Science and Education Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Jianrong Sun
- Department of Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xinzi Hu
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Guangzhi Li
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China.
| | - Song Wu
- Department of Urology, The Affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518009, China.
| |
Collapse
|
9
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
10
|
Zhu Y, Lu F. Astragaloside IV inhibits cell viability and glycolysis of hepatocellular carcinoma by regulating KAT2A-mediated succinylation of PGAM1. BMC Cancer 2024; 24:682. [PMID: 38835015 DOI: 10.1186/s12885-024-12438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.
Collapse
Affiliation(s)
- Yuanzhang Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Huangpu District, Shanghai, 200020, China
| | - Fei Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Huangpu District, Shanghai, 200020, China.
| |
Collapse
|
11
|
Huang Y, Chu C, Mai Y, Zhao Y, Cao L, Ji S, Zhu B, Shen Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front Pharmacol 2024; 15:1347234. [PMID: 38835665 PMCID: PMC11148558 DOI: 10.3389/fphar.2024.1347234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-β. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.
Collapse
Affiliation(s)
- Ying Huang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chenling Chu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Clinical Medicine and Stomatology, School of Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Mai
- Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Luxi Cao
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuiyu Ji
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quanquan Shen
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
| |
Collapse
|
12
|
You X, Qiu J, Li Q, Zhang Q, Sheng W, Cao Y, Fu W. Astragaloside IV-PESV inhibits prostate cancer tumor growth by restoring gut microbiota and microbial metabolic homeostasis via the AGE-RAGE pathway. BMC Cancer 2024; 24:472. [PMID: 38622523 PMCID: PMC11017490 DOI: 10.1186/s12885-024-12167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is becoming the most common malignancy in men worldwide. We investigated the effect of astragaloside IV combined with PESV on the gut microbiota and metabolite of PCa mice and the process of treating PCa. METHODS Nude mice were genetically modified to develop tumors characteristic of PCa. The treatment of PCa mice involved the administration of a combination of astragaloside IV and peptides derived from scorpion venom (PESV). Feces were collected for both 16 S rDNA and metabolic analysis. Fecal supernatant was extracted and used for fecal transplantation in PCa mice. Tumor development was observed in both PCa mice and nude mice. Tumor histopathology was examined, and the expression of inflammatory factors and the AGE-RAGE axis in PCa tissues were analyzed. RESULTS PCa mice treated with Astragaloside IV in combination with PESV showed a significant reduction in tumor volume and weight, and stabilization of gut microbiota and metabolites. At the Genus level, significant differences were observed in Porphyromonas, Corynebacterium, Arthromitus and Blautia, and the differential metabolites were PA16_016_0, Astragaloside+, Vitamin A acid, Nardosinone, a-Nortestoster, D-Pantethine, Hypoxanthine, Pregnenolone, cinnamic acid, Pyridoxa, Cirtruline and Xanthurenate. There was a correlation between gut microbiota and metabolites. After the fecal transplantation, tumor growth was effectively suppressed in the PCa mice. Notably, both the mRNA and protein levels of the receptor for advanced glycation end products (RAGE) were significantly decreased. Furthermore, the expression of inflammatory factors, namely NF-κB, TNF-α, and IL-6, in the tumor tissues was significantly attenuated. Conversely, upregulation of RAGE led to increased inflammation and reversed tumor growth in the mice. CONCLUSION Astragaloside IV combined with PESV could treat PCa by intervening in gut microbiota composition and metabolite by targeting RAGE.
Collapse
Affiliation(s)
- Xujun You
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Junfeng Qiu
- Department of Andrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518033, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Qing Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Wen Sheng
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, 418000, Huaihua, China
- School of Traditional Chinese Medicine, Hunan University of Medicine, 418000, Huaihua, China
| | - Yiguo Cao
- Department of Urology Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China.
| | - Wei Fu
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China.
| |
Collapse
|
13
|
Wu Y, Tang H, Liao Q, Tu Y, Fang S, He J, Cui S. Curcumol Inhibits the Progression of Hepatocellular Carcinoma by Regulating the Expression of hsa_circ_0028861. Cancer Biother Radiopharm 2024; 39:203-210. [PMID: 38181186 DOI: 10.1089/cbr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Hsa_circ_0028861, a newly discovered serum exosome circular RNA (circRNA), is greatly reduced in the serum of patients with hepatocellular carcinoma (HCC). However, the exact role of hsa_circ_0028861 in the progression of liver cancer is still unknown. Materials and Methods: Thirty patients with HCC were enrolled in this study. Hsa_circ_0028861 expression was explored via real-time polymerase chain reaction (PCR) assay. The influence of curcumol on HCC cells were tested using CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, cell wound healing assay, and migration assay, respectively. The related mechanism was determined by Western blot. A xenograft tumor model was constructed, and mice were administrated with curcumol. Results: The expression of hsa_circ_0028861 in tumor tissues was elevated of patients with HCC and in HCC cells. Curcumol treatment decreased the expression of hsa_circ_0028861 in HCC cells. Curcumol treatment could largely suppress the viability, proliferation, and migration of HCC cells by reducing hsa_circ_0028861 expression and mediating the epithelial-mesenchymal transition (EMT) process. Curcumol also effectively restrained tumor growth in the HCC mice model. Conclusions: Curcumol exerted an inhibitory role in HCC progression by downregulating hsa_circ_0028861 expression and mediating the EMT process, which provides evidence for screening new therapeutic targets and drug therapies for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuxian Fang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinfu He
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
15
|
Guan Y, Zhang J, Cai X, Cai Y, Song Z, Huang Y, Qian W, Pan Z, Zhang X. Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene 2024; 897:148040. [PMID: 38065426 DOI: 10.1016/j.gene.2023.148040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-β1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.
Collapse
Affiliation(s)
- Yanyun Guan
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yanan Cai
- Department of General Surgery, Tai'an 88 Hospital, Tai'an 271000, China
| | - Ziqiong Song
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Xingguo Zhang
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
16
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
18
|
Kong P, Tang X, Liu F, Tang X. Astragaloside IV regulates circ_0001615 and miR-873-5p/LASP1 axis to suppress colorectal cancer cell progression. Chem Biol Drug Des 2024; 103:e14423. [PMID: 38230773 DOI: 10.1111/cbdd.14423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Astragaloside IV (AS-IV) has exhibited pivotal anti-cancer efficacy in multiple types of cancer, including colorectal cancer (CRC). Meanwhile, circular RNA (circRNA) circ_0001615 has been reported to be involved in the malignant development of CRC. Herein, this study is expected to figure out the interaction between circ_0001615 and AS-IV on CRC progression. The 50% inhibition concentration (IC50), proliferation, apoptosis, and migration were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and wound healing assays. The expression of related proteins was examined by western blot. Circ_0001615, microRNA-873-5p (miR-873-5p), and LIM and SH3 protein 1 (LASP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The binding between miR-873-5p and circ_0001615, or LASP1, was predicted by Starbase, followed by verification by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological role of circ_0001615 and AS-IV on CRC tumor growth was detected by the xenograft tumor model in vivo. According to the IC50 of AS-IV in CRC cells, the 100 ng/mL AS-IV treatment for 24 h was chosen for the following research: Our data confirmed that AS-IV is a beneficial anti-cancer agent in CRC cells. Furthermore, circ_0001615 and LASP1 expression were increased, and miR-873-5p was decreased in CRC patients and cell lines, whereas their expression exhibited an opposite trend in AS-IV-treated cells. Functionally, applying AS-IV might act as a beneficial anti-cancer effect by downregulating circ_0001615 in CRC cells in vitro. Mechanically, circ_0001615 serves as a sponge for miR-873-5p to affect LASP1 expression. In addition, AS-IV inhibited CRC cell growth in vivo by modulating circ_0001615. Overall, AS-IV could mitigate CRC development, at least in part, through the circ_0001615/miR-873-5p/LASP1 axis. These findings support a theoretical basis for an in-depth study of the function of AS-IV and the clinical treatment of CRC.
Collapse
Affiliation(s)
- Pengfei Kong
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Xuemei Tang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Fang Liu
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Xuegui Tang
- Department of Anorectal of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
19
|
Wan S, Li KP, Wang CY, Chen SY, Cao JL, Yang JW, Wang HB, Li XR, Yang L. Exploring potential targets of HPV&BC based on network pharmacology and urine proteomics. J Pharm Biomed Anal 2023; 236:115694. [PMID: 37696190 DOI: 10.1016/j.jpba.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) caused by Human papillomavirus (HPV) infection remains a complex public health problem in developing countries. Although the HPV vaccine effectively prevents HPV infection, it does not benefit patients with BC who already have HPV. METHODS Firstly, the differential genes of HPV-related BC patients were screened by transcriptomics, and then the prognostic and clinical characteristics of the differential genes were analyzed to screen out the valuable protein signatures. Furthermore, the compound components and targets of Astragali Radix (AR) were analyzed by network pharmacology, and the intersection targets of drug components and HPV_BC were screened out for pathway analysis. In addition, the binding ability of the compound to the Astragali-HPV_BC target was verified by molecular docking and virtual simulation. Finally, to identify potential targets in BC patients through urine proteomics and in vitro experiments. RESULTS Eleven HPV_BC-related protein signatures were screened out, among which high expression of EGFR, CTNNB1, MYC, GSTM1, MMP9, CXCR4, NOTCH1, JUN, CXCL12, and KRT14 had a poor prognosis, while low expression of CASP3 had a poor prognosis. In the analysis of clinical characteristics, it was found that high-risk scores, EGFR, MMP9, CXCR4, JUN, and CXCL12 tended to have higher T stage, pathological stage, and grade. Pharmacological and molecular docking analysis identified a natural component of AR (Quercetin) and it corresponding core targets (EGFR). The OB of the natural component was 46.43, and the DL was 0.28, respectively. In addition, EGFR-Quercetin has high affinity. Urine proteomics and RT-PCR showed that EGFR was expressed explicitly in BC patients. Mechanism analysis revealed that AR component targets might affect HPV_BC patients through Proteoglycans in the cancer pathway. CONCLUSION AR can target EGFR through its active component (Quercetin), and has a therapeutic effect on HPV_BC patients.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Jin-Long Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China.
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province Clinical Research Center for Urology, Lanzhou 730000, China.
| |
Collapse
|
20
|
Yuan F, Yang Y, Liu L, Zhou P, Zhu Y, Chai Y, Chen K, Tang W, Huang Q, Zhang C. Research progress on the mechanism of astragaloside IV in the treatment of asthma. Heliyon 2023; 9:e22149. [PMID: 38045181 PMCID: PMC10692808 DOI: 10.1016/j.heliyon.2023.e22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Asthma is a common chronic respiratory disease, and its treatment is a core problem and challenge in clinical practice. Glucocorticoids (GCs) are the first-line therapy for the treatment of asthma. Local and systemic adverse reactions caused by GCs create obstacles to the treatment of asthma. Therefore, the research target is to find a new, safe, and effective therapeutic medicine at present. Natural products are an important source for treating asthma with low cost and low toxicity. Astragaloside IV (AS-IV) is an active ingredient of traditional Chinese medicine Astragalus mongholicus Bunge. Previous studies have indicated that AS-IV plays a therapeutic role in the treatment of asthma by inhibiting airway inflammation and remodeling the airway, and by regulating immunity and neuroendocrine function (Fig. 1) . It has a variety of biological characteristics such as multi-target intervention, high safety, and good curative effect. This article reviews the specific mechanism of AS-IV for the treatment of asthma to provide references for subsequent research.
Collapse
Affiliation(s)
- Fanyi Yuan
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Ziyang T, Xirong H, Chongming A, Tingxin L. The potential molecular pathways of Astragaloside-IV in colorectal cancer: A systematic review. Biomed Pharmacother 2023; 167:115625. [PMID: 37793276 DOI: 10.1016/j.biopha.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Astragaloside IV (AS-IV), a traditional Chinese medicine, is often used to treat cancer. Colorectal cancer imposes a heavy burden on patients and society. It is essential to update the clinical evidence supporting AS-IV in the treatment of colorectal cancer. The purpose of this review is to systematically evaluate the molecular pathway and safety of AS-IV in colorectal cancer. 7 databases were queried for Jan 2012-Dec 2022. A total of 37 related articles were retrieved. 8 papers were included to evaluate the role of AS-IV in colorectal cancer and make a review. AS-IV plays vital roles in colorectal cancer, especially in the suppression of proliferation, inducing tumor cell apoptosis, increasing immune function and reducing drug resistance. Furthermore, AS-IV has been proved to regulate many signaling pathways, which are usually affected by most cancers. However, a large-scale and well-designed multicenter randomized controlled study ensures that the safety and optimal dose of AS-IV will be determined in the future.
Collapse
Affiliation(s)
- Tang Ziyang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hu Xirong
- Faculty of Nursing, Xi'an Jiaotong University, Xi'an, PR China
| | - An Chongming
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Li Tingxin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, Chengdu, PR China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| |
Collapse
|
22
|
Zhang Z, Zhang M, Xu Y, Lu M, Zhang L, Li C. Effect of Astragaloside IV on improving cardiac function in rats with heart failure: a preclinical systematic review and meta-analysis. Front Pharmacol 2023; 14:1226008. [PMID: 37854719 PMCID: PMC10579795 DOI: 10.3389/fphar.2023.1226008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Astragaloside IV (ASIV) is the primary pharmacologically active compound found in Astragalus propinquus Schischkin, which has potential protective effects on cardiac function. However, there are almost no systematic evaluations of ASIV for the treatment of heart failure (HF). Methods: Preclinical studies published before 27 December 2022, were retrieved from PubMed, Web of Science, MEDLINE, SinoMed, Chinese National Knowledge Infrastructure (CNKI), VIP information database, and Wanfang Data information site. The quality of included research was evaluated using SYRCLE's RoB tool. Review Manager 5.4.1 was used to perform meta-analyses of the cardiac function parameters and other indicators. Regression analysis was conducted to observe the dose-efficacy relationship. Results: Nineteen studies involving 489 animals were included. Results indicated that compared with the control group, ASIV could enhance cardiac function indicators, including left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular pressure change rate (±dp/dtmax), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW). Furthermore, the regression analysis showed that the treatment of HF with ASIV was dose-dependent. Conclusion: Findings suggest that ASIV can inhibit cardiac hypertrophy by reducing cardiac preload and afterload, thereby protecting cardiac function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongkai Xu
- Department of Peripheral Vascular Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
24
|
Liu H, Luo S, Sha X, Chen Z, Yang D. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts through regulation of the HOXA6/ZBTB12 axis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:423-439. [PMID: 37708965 DOI: 10.2478/acph-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/16/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in the tumor microenvironment and exert tumor-promoting or tumor-retarding effects on cancer development. Astragaloside IV has been suggested to rescue the pathological impact of CAFs in gastric cancer. This study aimed to investigate the potential mechanism of astragaloside IV in the regulation of CAF pathological functions in gastric cancer development. Homeobox A6 (HOXA6), and Zinc Finger and BTB Domain Containing 12 (ZBTB12) are highly expressed in gastric CAFs compared with normal fibroblasts (NFs) based on the GSE62740 dataset. We found that astragaloside IV-stimulated CAFs suppressed cell growth, migration, and invasiveness of gastric cancer cells. HOXA6 and ZBTB12 were downregulated after astragaloside IV treatment in CAFs. Further analysis revealed that HOXA6 or ZBTB12 knockdown in CAFs also exerted inhibitory effects on the malignant phenotypes of gastric cells. Additionally, HOXA6 or ZBTB12 overexpression in CAFs enhanced gastric cancer cell malignancy, which was reversed after astragaloside IV treatment. Moreover, based on the hTFtarget database, ZBTB12 is a target gene that may be transcriptionally regulated by HOXA6. The binding between HOXA6 and ZBTB12 promoter in 293T cells and CAFs was further confirmed. HOXA6 silencing also induced the downregulation of ZBTB12 mRNA and protein in CAFs. Astragaloside IV was demonstrated to regulate the expression of ZBTB12 by mediating the transcriptional activity of HOXA6. Our findings shed light on the therapeutic value of astragaloside IV for gastric cancer.
Collapse
Affiliation(s)
- Haibo Liu
- The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang Jiangsu Province, 222042, China
| | - Shicheng Luo
- The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang Jiangsu Province, 222042, China
| | - Xiaofeng Sha
- Department of Medical Oncology Hongze District People's Hospital of Huai'an City, Jiangsu Province 223100, China
| | - Zhiping Chen
- Department of Medical Oncology Hongze District People's Hospital of Huai'an City, Jiangsu Province 223100, China
| | - Dongdong Yang
- Nanjing Jiangbei Hospital Nanjing, Jiangsu Province, 211500 China
| |
Collapse
|
25
|
Dai CL, Zhang RJ, An P, Deng YQ, Rahman K, Zhang H. Cinobufagin: a promising therapeutic agent for cancer. J Pharm Pharmacol 2023; 75:1141-1153. [PMID: 37390473 DOI: 10.1093/jpp/rgad059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES Cinobufagin is a natural active ingredient isolated from the traditional Chinese medicine Venenum Bufonis (Chinese: Chansu), which is the dried secretion of the postauricular gland or skin gland of the Bufo gargarizans Cantor or Bufo melanostictus Schneider. There is increasing evidence indicating that cinobufagin plays an important role in the treatment of cancer. This article is to review and discuss the antitumor pharmacological effects and mechanisms of cinobufagin, along with a description of its toxicity and pharmacokinetics. METHODS The public databases including PubMed, China National Knowledge Infrastructure and Elsevier were referenced, and 'cinobufagin', 'Chansu', 'Venenum Bufonis', 'anticancer', 'cancer', 'carcinoma', and 'apoptosis' were used as keywords to summarize the comprehensive research and applications of cinobufagin published up to date. KEY FINDINGS Cinobufagin can induce tumour cell apoptosis and cycle arrest, inhibit tumour cell proliferation, migration, invasion and autophagy, reduce angiogenesis and reverse tumour cell multidrug resistance, through triggering DNA damage and activating the mitochondrial pathway and the death receptor pathway. CONCLUSIONS Cinobufagin has the potential to be further developed as a new drug against cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Run-Jing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Qing Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
26
|
Yu Y, Hao J, Wang L, Zheng X, Xie C, Liu H, Wu J, Qiao S, Shi J. Astragaloside IV antagonizes the malignant progression of breast cancer induced by macrophage M2 polarization through the TGF-β-regulated Akt/Foxo1 pathway. Pathol Res Pract 2023; 249:154766. [PMID: 37633006 DOI: 10.1016/j.prp.2023.154766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/27/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Astragaloside IV (AS‑IV) was used for breast cancer (BC) treatment in China from ancient times; however, the mechanism of the prevention effect of AS-IV on BC remains not entirely clear. METHODS qRT-PCR, western blot and flow cytometry were employed to validate the expression of gene and protein expressions. CCK-8 assay, scratch assay, and transwell assay were used to assess the BC cell proliferation, migration, and invasion. Co-culture of conditional medium from macrophages and BC were performed. RESULTS AS-IV suppressed macrophage polarized to M2 phenotype and thereby inhibited M2 macrophage-induced BC progression. The inhibitory effect of AS-IV on M2 macrophage polarization was exerted via the deactivation of the Akt/Foxo1 signaling pathway in macrophages by suppressing TGF-β. The addition of TGF-β or the treatment with Akt activator SC79 reversed the regulatory effect of AS-IV on M2 macrophage polarization, which increased M2 macrophage polarization-induced BC cell proliferation, migration and invasion. CONCLUSION This present study revealed a new mechanism of AS-IV inhibited M2 macrophage polarization-induced BC progression and may provide a potential target for the treatment of BC.
Collapse
Affiliation(s)
- Yanqin Yu
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Jinqi Hao
- Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Lu Wang
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Xiaojiao Zheng
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Caixia Xie
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Hailiang Liu
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Jiao Wu
- Baotou Medical College of Inner Mongolia University of Science and Technology, China
| | - Shu Qiao
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China.
| | - Jihai Shi
- The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, China.
| |
Collapse
|
27
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
28
|
Zhang L, Gao J, Li Z, Liu J, Zhang C, Liu J, Dong H, Mei W. Astragaloside IV relieves IL-1β-induced human nucleus pulposus cells degeneration through modulating PI3K/Akt signaling pathway. Medicine (Baltimore) 2023; 102:e34815. [PMID: 37603510 PMCID: PMC10443759 DOI: 10.1097/md.0000000000034815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a multifactorial disease that is associated with nucleus pulposus (NP) apoptosis and extracellular matrix (ECM) degeneration and inflammation. Astragaloside IV (AS IV) has antioxidant, free radical scavenging, anti-inflammatory and anti-apoptosis effects. This study was to investigate whether AS IV could inhibit IL-1β-mediated apoptosis of HNP cells and its possible signal transduction pathway. METHODS Human nucleus pulposus cells (HNPCs) were stimulated with AS IV or LY294002 (PI3K inhibitor), followed by exposure to IL-1β for 24 hours. CCK8, TUNEL analysis and flow cytometry, ELISA and Western blotting were used to analyze the effects of AS IV on cell proliferation, apoptosis, inflammation, ECM and PI3K/Akt pathway signaling path-related proteins in IL-1β-induced HNPCs. RESULTS Compared with IL-1β-induced HNPCs, AS IV could improve the proliferation activity and the expressions of Collagen II, Aggrecan and Bcl-2 proteins, inhibit the apoptosis rate, inflammation and Bax and cleaved caspase-3 protein expression, and increase the activity of PI3K/Akt pathway. LY294002 attenuated the protective effect of AS IV against IL-1β-induced HNPCs degeneration. CONCLUSION AS IV can inhibit IL-1β-induced HNPCs apoptosis inflammation and ECM degeneration by activating PI3K/Akt signaling pathway, which can be an effective drug to reduce disc degeneration.
Collapse
Affiliation(s)
- Lu Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Junsheng Gao
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Zhentao Li
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jun Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Chong Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jie Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Hui Dong
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Wei Mei
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| |
Collapse
|
29
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
30
|
Gong P, Yue S, Shi F, Yang W, Yao W, Chen F, Guo Y. Protective Effect of Astragaloside IV against Cadmium-Induced Damage on Mouse Renal Podocytes (MPC5). Molecules 2023; 28:4897. [PMID: 37446560 DOI: 10.3390/molecules28134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the protective effect of Astragaloside IV (Ast) on mouse podocytes and its possible mechanism of action by constructing a cadmium-induced mouse renal podocytes model. We investigated the effects of cadmium (Cd) toxicity on cell number, morphology, the mitochondrial status of subcellular organelles, protein and gene levels, and the protective effects of Ast by constructing a model of Cd-induced damage to mouse renal podocytes (MPC5) and giving Ast protection at the same time. The results showed that exposure of MPC5 cells to CdCl2 culture medium containing 6.25 μM concentration acted with low cell mortality, but the mortality of MPC5 cells increased with the prolongation of cadmium exposure time. Given Ast, the death rate in the low dose group (12.5 μM) was significantly reduced, while the death rate in the medium dose group (25 μM) was extremely significantly reduced. In comparison to the control group, the Cd-exposed group exhibited a significant increase of 166.7% in malondialdehyde (MDA) content and a significant decrease of 17.1% in SOD activity. The mitochondrial membrane potential was also reduced to varying degrees. However, in the Ast-protected group compared to the Cd-exposed group, the MDA content significantly decreased by 20.8%, the SOD activity decreased by 7.14%, and the mitochondrial membrane potential showed a significant increase. Fluorescence staining of mitochondrial membrane potential indicated that Cd exposure caused mitochondrial apoptosis. In the 12-h cadmium-exposed group, the protein expression of Nephrin in mice significantly decreased by 33.4%. However, the expression of the Desmin protein significantly increased by 67.8%, and the expression of the autophagy protein LC3-II significantly increased by 55.5%. Meanwhile, the expression of PINK1, a mitochondrial autophagy pathway protein, was significantly increased in the 12 h and 24 h cadmium exposure groups. The mRNA level of PINK1 was significantly increased, and that of Parkin was decreased in the 48 h cadmium exposure group. Compared to the Cd-exposed group, the Ast group showed more significant improvements in the expression of podocyte structure, functional proteins, and mitochondrial autophagy pathway proteins. The immunological assay of mitochondrial autophagic pathway proteins further indicated that Cd-induced damage to MPC5 cells might be associated with the dysregulation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxiong Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
31
|
Fang Gong Y, Hou S, Xu JC, Chen Y, Zhu LL, Xu YY, Chen YQ, Li MM, Li LL, Yang JJ, Yang Y. Amelioratory effects of astragaloside IV on hepatocarcinogenesis via Nrf2-mediated pSmad3C/3L transformation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154903. [PMID: 37301185 DOI: 10.1016/j.phymed.2023.154903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.
Collapse
Affiliation(s)
- Yong Fang Gong
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; School of Nursing, Anhui Medical University, No.15, feicui Road, Economic and Technological Development Zone, Hefei, China
| | - Shu Hou
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jia-Cheng Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Le-Le Zhu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Ying-Ying Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yu-Qing Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Miao-Miao Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Li-Li Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jing-Jing Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China.
| |
Collapse
|
32
|
Yao J, Liu J, He Y, Liu L, Xu Z, Lin X, Liu N, Kai G. Systems pharmacology reveals the mechanism of Astragaloside IV in improving immune activity on cyclophosphamide-induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116533. [PMID: 37100262 DOI: 10.1016/j.jep.2023.116533] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelosuppression, also known as bone marrow suppression (BMS), is a pathological phenomenon of the decrease in the production of blood cells and further lead to immune homeostasis disorder. Astragalus mongholicus Bunge (AM, checked with The World Flora Online, http://www.worldfloraonline.org, updated on January 30, 2023) is a traditional Chinese medicine with efficacy of tonifying Qi and strengthening body immunity in thousands of years of clinical practice in China. Astragaloside IV (AS-IV) is a major active ingredient of AM, which plays an important role in regulating immune system through different ways. AIM OF THE STUDY This study was aimed to investigate the protective effect and mechanism of AS-IV on macrophages in vitro and cyclophosphamide (CTX)-induced immunosuppressive mice in vivo, and to provide experimental basis for the prevention and treatment of AS-IV in myelosuppression. MATERIALS AND METHODS Based on network pharmacology and molecular docking technology, the core targets and signaling pathways of saponins of AM against myelosuppression were screened. And then, the immunoregulatory effect of AS-IV on RAW264.7 cells was investigated by cellular immune activity and cellular secretion analysis in vitro. In this way, the effects of AS-IV on the main potential targets of HIF-1α/NF-κB signaling pathway were analyzed by qRT-PCR and Western blot methods. Furthermore, comprehensive analysis of the effects of AS-IV against CTX-induced mice were conducted on the basis of immune organs indices analysis, histopathological analysis, hematological analysis, natural killer cell activity analysis and spleen lymphocyte transformation activity analysis. In order to further verify the relationship between active ingredients and action targets, drug inhibitor experiments were finally conducted. RESULTS AS-IV, as a potential anti-myelosuppressive compound, was screened by systematic pharmacological methods to act on target genes including HIF1A and RELA together with the HIF-1α/NF-κB signaling pathway. Further studies by molecular docking technology showed that AS-IV had good binding activity with HIF1A, RELA, TNF, IL6, IL1B and other core targets. Besides, cellular and animal experiments validation results showed that AS-IV could enhance the migration and phagocytosis of RAW264.7 cells, and protect the immune organs such as spleen and thymus together with bone tissues from damage. By this means, immune cell function including spleen natural killer cell and lymphocyte transformation activity were also enhanced. In addition, white blood cells, red blood cells, hemoglobin, platelets and bone marrow cells were also significantly improved in the suppressed bone marrow microenvironment (BMM). In kinetic experiments, the secretion of cytokines such as TNF-α, IL-6 and IL-1β were increased, and IL-10, TGF-β1 were decreased. The key regulatory proteins such as HIF-1α, NF-κB, PHD3 in HIF-1α/NF-κB signaling pathway were also regulated in the results of upregulated expression of HIF-1α, p-NF-κB p65 and PHD3 at the protein or mRNA level. Finally, the inhibition experiment results suggested that AS-IV could significantly improve protein response in immunity and inflammation such as HIF-1α, NF-κB and PHD3. CONCLUSION AS-IV could significantly relieve CTX-induced immunosuppressive and might improve the immune activity of macrophages by activating HIF-1α/NF-κB signaling pathway, and provide a reliable basis for the clinical application of AS-IV as a potentially valuable regulator of BMM.
Collapse
Affiliation(s)
- Jiaxiong Yao
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Junqiu Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yining He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zonghui Xu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xianming Lin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Na Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
33
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
34
|
Guo J, Zhao Y, Wu X, Li G, Zhang Y, Song Y, Du Q. Mechanism exploration and prognosis study of Astragali Radix-Spreading hedyotis herb for the treatment of lung adenocarcinoma based on bioinformatics approaches and molecular dynamics simulation. Front Chem 2023; 11:1128671. [PMID: 37065830 PMCID: PMC10090857 DOI: 10.3389/fchem.2023.1128671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH) has been frequently prescribed in clinical for the treatment of lung cancer owing to its favorable efficacy. Yet, the mechanism under the therapeutic effects remained unveiled, which has limited its clinical applications, and new drug development for lung cancer.Methods: The bioactive ingredients of AR and SH were retrieved from the Traditional Chinese Medicine System Pharmacology Database, with the targets of obtained components predicted by Swiss Target Prediction. Genes related to lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD databases, with the hub genes of LUAD screened by CTD database. The intersected targets of LUAD and AR-SH were obtained by Venn, with David Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of core proteins and active ingredients was performed by Auto-Dock Vina software, followed by molecular dynamics simulations of protein-ligand complexes with well-docked conformations.Results: 29 active ingredients were screened out with 422 corresponding targets predicted. It is revealed that AR-SH can act on various targets such as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and Isomucronulatol 7,2′-di-O-glucoside (IDOG) to alleviate the symptoms of LUAD. Biological processes involved are protein phosphorylation, negative regulation of apoptotic process, and pathways involved are endocrine resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1 pathway. Molecular docking analysis indicated that the binding energy of most of the screened active ingredients to proteins encoded by core genes was less than −5.6 kcal/mol, with some active ingredients showing even lower binding energy to EGFR than Gefitinib. Three ligand-receptor complexes including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively stable by molecular dynamics simulation, which was consistent with the results of molecule docking.Conclusion: We suggested that the herb pair of AR-SH can act on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the enhancement of prognosis of LUAD.
Collapse
Affiliation(s)
- Junfeng Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ganggang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuwei Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
35
|
Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 159:114229. [PMID: 36652731 DOI: 10.1016/j.biopha.2023.114229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.
Collapse
|
36
|
Liu F, Xu J, Yang R, Liu S, Hu S, Yan M, Han F. New light on treatment of cervical cancer: Chinese medicine monomers can be effective for cervical cancer by inhibiting the PI3K/Akt signaling pathway. Biomed Pharmacother 2023; 157:114084. [PMID: 36481407 DOI: 10.1016/j.biopha.2022.114084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC), as the most common malignant tumor of the female reproductive system, is infamous for its high morbidity and mortality rates. Its development and metastasis are intricate because numerous signaling pathways are involved. Since the cancer and the PI3K/Akt signaling pathway are closely intertwined, direct inhibition of either the PI3K/Akt pathway or its target genes and molecules may be remarkably constructive for treatment. Albeit remarkable advances in the treatment of CC, existing common anti-cancer medications are not without problems. These problems include myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm, which are the most common and well-recognized toxicities associated with these medications. Therefore, it is necessary and urgent to develop novel, potent, secure, and more reasonably priced anticancer medications that are void of the above problems. Against this backdrop, Chinese medicine monomers have received more attention in recent years owing to their safety, low toxicity, few side effects, and anti-tumor properties. By regulating the PI3K/Akt signaling pathway, Chinese medicine monomers are effective not only in inhibiting CC growth, proliferation, apoptosis, invasion, migration, and reversing drug resistance but also in a variety of targets. Most previous earlier studies focused on the use of a single traditional Chinese medicine monomer to treat CC by regulating the PI3K/Akt signaling pathway rather than a combination of several such monomers. More importantly, to our knowledge, there has hardly been any study providing an exhaustive and comprehensive review of all the Chinese medicine monomers at CC. In response to this scarcity, we attempt in this paper to provide a comprehensive review of all the literature to date on traditional Chinese medicine monomers at cervical cancer, highlight the mechanisms and future prospects for their use in the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Fangyuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayue Xu
- Xi'an Hospital of Chinese Medicine, Xi'an 710021, China
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shaoxuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Mengyu Yan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fengjuan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
37
|
Yang K, Bao T, Zeng J, Wang S, Yuan X, Xiang W, Xu H, Zeng L, Ge J. Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: A review. Biomed Pharmacother 2023; 157:113999. [PMID: 36455455 DOI: 10.1016/j.biopha.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Its pathogenesis is not completely clear, and inflammatory cascade is one of its main pathological processes. The current clinical practice of IS is to restore the blood supply to the ischemic area after IS as soon as possible through thrombolytic therapy to protect the vitality and function of neurons. However, blood reperfusion further accelerates ischemic damage and cause ischemia-reperfusion injury. The pathological process of cerebral ischemia-reperfusion injury involves multiple mechanisms, and the exact mechanism has not been fully elucidated. Pyroptosis, a newly discovered form of inflammatory programmed cell death, plays an important role in the initiation and progression of inflammation. It is a pro-inflammatory programmed death mediated by caspase Caspase-1/4/5/11, which can lead to cell swelling and rupture, release inflammatory factors IL-1β and IL-18, and induce an inflammatory cascade. Recent studies have shown that pyroptosis and its mediated inflammatory response are important factors in aggravating ischemic brain injury, and inhibition of pyroptosis may alleviate the ischemic brain injury. Furthermore, studies have found that natural plant components may have a regulatory effect on pyroptosis. Therefore, this review not only summarizes the molecular mechanism of pyroptosis and its role in ischemic stroke, but also the role of natural plant components as regulator of pyroptosis, in order to provide reference information on pyroptosis for the treatment of IS in the future.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Tingting Bao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, Hunan Province, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
38
|
Bai Y, Wei W, Yao C, Wu S, Wang W, Guo DA. Advances in the chemical constituents, pharmacological properties and clinical applications of TCM formula Yupingfeng San. Fitoterapia 2023; 164:105385. [PMID: 36473539 DOI: 10.1016/j.fitote.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Yupingfeng San (YPFS) is a famous and commonly used traditional Chinese medicine (TCM) formula for the treatment of chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia in China. It is composed of three Chinese herbs, including Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix. In this review, the relevant references on YPFS were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literatures published from 2000 to 2022 were screened and summarized. The constituents in YPFS could be classified into nine groups according to their structures, including flavonoids, saponins, essential oils, coumarins, lactones, amino acids, organic acids, saccharides, chromones and others. The importance of chemical constituents in YPFS were demonstrated for specific pathological processes including immunoregulatory, anti-inflammatory, anti-tumor and pulmonary diseases. This article systematically reviewed the up-to-date information on its chemical compositions, pharmacology and safety, that could be used as essential data and reference for clinical applications of YPFS.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - De-An Guo
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
39
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|
40
|
Impact of anthocyanin on genetic stability in mammary adenocarcinoma-induced mice treated with methotrexate. GENES & NUTRITION 2022; 17:6. [PMID: 35513806 PMCID: PMC9074366 DOI: 10.1186/s12263-022-00709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Background Genetic instability leads to genome mutations, changes in nucleotide sequences, rearrangements, and gains or losses of part of the chromosomes. This instability can initiate and develop cancer. This study evaluated genomic stability in methotrexate and anthocyanin-treated mammary adenocarcinoma model. Seventy albino mice were divided into seven groups: negative control, anthocyanin, methotrexate, Ehrlich’s solid tumor; Ehrlich’s solid tumor and methotrexate; Ehrlich’s solid tumor and anthocyanin; and Ehrlich’s solid tumor, methotrexate, and anthocyanin groups. Results Tumor weight and size were evaluated. Serum arylesterase activity was low in all the induced tumors and those treated with anthocyanin, methotrexate, or both. Poly[adenosine diphosphate (ADP)-ribose] polymerase activity was high, and glutathione S-transferase activity was low in the tumors treated with anthocyanin, methotrexate, or both, compared with that of the untreated tumor. There was an increase in DNA damage in the mice with solid tumors and those injected with methotrexate or methotrexate and anthocyanin, compared with that in the untreated mice. Conclusions There was a decrease in genetic instability and DNA damage in the tumor-bearing mice treated with anthocyanin, with a concomitant increase in nuclear poly[adenosine diphosphate (ADP)-ribose] polymerase activity, compared with those of the untreated group. Anthocyanin exerted positive effects in the treatment of mammary adenocarcinoma.
Collapse
|
41
|
Astragaloside IV Inhibits the Proliferation of Human Uterine Leiomyomas by Targeting IDO1. Cancers (Basel) 2022; 14:cancers14184424. [PMID: 36139584 PMCID: PMC9496999 DOI: 10.3390/cancers14184424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Immunotherapy is increasingly becoming a success strategy for oncology treatment. Indoleamine-2,3-dioxygenase1 (IDO1) is a tryptophan-degrading enzyme involved in immunological escape mechanisms, which is considered as a potential target for tumor therapy. However, the clinical efficacy of IDO1 inhibitors is not promising. Therefore, there is an urgent to investigate the mechanism between chemical drugs with antitumor effects and IDO1-mediated immunosuppression. The Chinese medicine AS-IV exerts antitumor effects with many advantages, including fewer toxic side effects and immunomodulatory effects. We noted the lack of studies of AS-IV on benign tumors. Therefore, our study demonstrates the Inhibitory effect of AS-IV on ULMs and elucidates the underlying mechanism. Abstract Astragaloside IV (AS-IV) is a chemical found in traditional Chinese medicine called Astragalus membranaceus (Fisch.) Bunge that has antitumor properties. However, the roles and mechanisms of AS-IV in uterine leiomyomas (ULMs) are unclear. The immunosuppressive enzyme indoleamine-2,3-dioxygenase-1 (IDO1) is involved in tumor formation. IDO1 is a new and reliable prognostic indicator for several cancers. In this work, AS-IV was applied to ULM cells in various concentrations. CCK-8, immunofluorescence, and flow cytometry were used to examine the proliferation and apoptosis of ULM cells caused by AS-IV. After lentiviral vector transduction with IDO1 short hairpin RNA (shRNA), the knockdown and overexpression of IDO1 were stable in ULM cells. To verify the antitumor effect of AS-IV in vivo, we established a rat model of uterine leiomyoma. HE staining, Masson staining, and transmission electron microscopy were used to observe pathological changes in the uterus, and the levels of serum sex hormones were measured by radio immune assay (RIA). The levels of CD3+T, CD4+T, and CD25+ Foxp3+Treg in rat peripheral blood were detected by flow cytometry. Western blotting and immunohistochemistry were used to examine protein expression. We found that AS-IV dramatically increased the apoptotic rate of ULM cells and reduced viability in a time- and dosage-dependent manner. After sh-IDO1 lentiviral transfection, we discovered that knocking down IDO1 reversed the effects of AS-IV on ULM cell proliferation and autophagy. We also found that AS-IV can effectively inhibit the growth of ULMs in vivo. AS-IV may promote apoptosis and autophagy in ULMs by activating PTEN/PI3K/AKT signaling through inhibition of IDO1. These findings imply that AS-IV exerts antifibroid effects, and the underlying mechanism may be IDO1, which is involved in proliferation, apoptosis, and autophagy.
Collapse
|
42
|
Chen BY, Liou JC, Wu JL, Chen CH, Yang SL. Photoreceptor and vision protective effects of astragaloside IV in mice model with light-evoked retinal damage. Biomed Pharmacother 2022; 153:113404. [DOI: 10.1016/j.biopha.2022.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
43
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
44
|
Zhao F, Meng Y, Wang Y, Fan S, Liu Y, Zhang X, Ran C, Wang H, Lu M. Protective effect of Astragaloside IV on chronic intermittent hypoxia-induced vascular endothelial dysfunction through the calpain-1/SIRT1/AMPK signaling pathway. Front Pharmacol 2022; 13:920977. [PMID: 35983375 PMCID: PMC9381017 DOI: 10.3389/fphar.2022.920977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial dysfunction (VED) is linked with the pathogenesis of obstructive sleep apnea (OSA) comorbidities, such as cardiovascular disease. Astragaloside IV (As-IV) has exhibited significant improvement for endothelial dysfunction. Nonetheless, the protective mechanism is not clear. Therefore, the present study investigated the potential mechanism of As-IV on VED. Calpain-1 knockout and wild-type C57BL/6 mice exposed to chronic intermittent hypoxia (CIH) were established and treated with As-IV (40, 80 mg/kg) for 4 weeks. Human coronary artery endothelial cells (HCAECs) subjected to CIH exposure were pretreated with As-IV, MDL-28170 (calpain-1 inhibitor) and SRT1720 (SIRT1 activator) for 48 h in vitro. The endothelial function, inflammation, oxidative stress and mitochondrial function were measured to evaluate VED. Our data revealed that As-IV treatment ameliorated CIH-induced endothelial-dependent vasomotion and augmented nitric oxide (NO) production. As-IV administration suppressed the secretion of inflammation, oxidative stress and mitochondrial dysfunction. As-IV treatment reduced the expression of calpain-1 and restored the downregulated expression of SIRT1 and Thr172 AMPK and Ser1177 eNOS phosphorylation. The effects of calpain-1 knockout and SRT1720 were similar to the effect of As-IV on VED. These findings demonstrated that As-IV ameliorated VED induced by chronic intermittent hypoxia via the calpain-1/SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Meili Lu
- *Correspondence: Hongxin Wang, ; Meili Lu,
| |
Collapse
|
45
|
Liang C, Yao Y, Ding H, Li X, Li Y, Cai T. Rapid classification and identification of chemical components of Astragali radix by UPLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:943-960. [PMID: 35726352 DOI: 10.1002/pca.3150] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Pharmacological studies indicate that Astragalus (AR) has various bioactivities, including anticancer, antiaging, anti-inflammatory, antiviral, and antioxidant activities. Flavonoids, saponins, amino acids, and polysaccharides are the main active components in AR. However, its complex chemical compositions bring certain difficulties to the analysis of this traditional Chinese medicine (TCM). Therefore, there is an urgent need to establish a method for rapid classification and identification of the chemical constituents in AR. OBJECTIVE To establish a method for rapid classification and identification of the main components of flavonoids, saponins, and amino acids in AR. METHODS The samples were analysed with ultra-high-performance liquid chromatography time-of-flight quadrupole mass spectrometry (UPLC-Q-TOF-MS) and data post-processing techniques. Firstly, fragmentation information was obtained in the positive and negative ion modes. Then, to realize the rapid classification and identification of AR components, the characteristic fragmentations (CFs) and neutral losses (NLs) were compared with information described in the literature. RESULTS A total of 45 chemical constituents were successfully screened out, including 22 flavonoids, 13 saponins, and 10 amino acids. CONCLUSION The established method realised the efficient classification and identification of flavonoids, saponins, and amino acid compounds in AR, which provided a basis for further study on AR.
Collapse
Affiliation(s)
- Chenrui Liang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoran Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
46
|
Wang Y, Zhu X, Wang K, Cai Y, Liu C, Pan J, Sun J, Liu T, Huang Y, Li Y, Lu Y. Cell Metabolomics Study on Synergistic anti-Hepatocellular Carcinoma Effect of Aidi Injection Combined with Doxorubicin. Biomed Chromatogr 2022; 36:e5451. [PMID: 35848595 DOI: 10.1002/bmc.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the second most common cause of cancer deaths. This study aimed to explore the inhibitory effect and mechanism of Aidi injection (ADI) combined with doxorubicin (DOX) in HCC treatment. The drug concentrations in combined threapy was determined by investigating the effect of various concentrations of ADI and DOX on the viability of H22 cells. The combination index (CI) was also calculated. A metabolomic strategy based on ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) platform was established to analyze the metabolites. As a result, the CI values were less than 1, indicating that the combination of ADI and DOX exerted a synergistic effect on HCC treatment. The combination of 40‰ ADI and 1 μmol/L DOX had the strongest inhibitory effect and was used for subsequent metabolomic analysis. A total of 19 metabolic markers were obtained in metabolomic analysis, including amino acids (L-glutamic acid, L-arginine, and L-tyrosine), organic acids (succinic acid and citric acid), adenosine, and hypoxanthine , etc. Compared with the treatment using DOX or ADI alone, the combined therapy further regulated the levels of metabolic markers in HCC, which may be the reason for the synergistic effect. Seven metabolic pathways were significantly enriched, including phenylalanine, tyrosine and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, and purine metabolism. These findings demonstrated that ADI combined with DOX can effectively inhibit the viability of H22 cells, which may exert a synergistic anti-tumor effect by balancing the metabolism of amino acids and energy-related substances.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Kailiang Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ying Cai
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
47
|
You X, Wu Y, Li Q, Sheng W, Zhou Q, Fu W. Astragalus-Scorpion Drug Pair Inhibits the Development of Prostate Cancer by Regulating GDPD4-2/PI3K/AKT/mTOR Pathway and Autophagy. Front Pharmacol 2022; 13:895696. [PMID: 35847007 PMCID: PMC9277392 DOI: 10.3389/fphar.2022.895696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to explore the active ingredients and potential mechanism of action of the Astragalus-Scorpion (A-S) drug pair in PCa, in order to provide new insights into the treatment of PCa. Methods: Network pharmacology was used to analyze the A-S drug pair and PCa targets. Bioinformatics analysis was used to analyze the LncRNAs with significant differences in PCa. The expression of LC3 protein was detected by immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR pathway and autophagy-related proteins were detected by western blot. LC-MS/MS was used to identify the active components of Astragalus and Scorpion. Results: A-S drug pair and PCa have a total of 163 targets, which were mainly related to the prostate cancer and PI3K/AKT pathways. A-S drug pair inhibited the formation of PCa, promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of P62 and PI3K-AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide extract from scorpion venom (PESV) were identified as the main active components of the A-S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV. Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by regulating the PI3K/AKT/mTOR pathway. Conclusion: Astragaloside IV-PESV is the main active components of A-S drug pair treated PCa by regulating the GDPD4-2/PI3K-AKT/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
48
|
Zhu D, Xu Y, Feng F, Wang Z, Han D, Zhou X. Effect of kangai injection combined with platinum-based chemotherapy on the immune function of patients with advanced non-small-cell lung cancer: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154088. [PMID: 35397286 DOI: 10.1016/j.phymed.2022.154088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kangai injection (KAI) is a well-known Chinese patent medicine applied for several different types of cancers in the clinic as an auxiliary therapeutic approach, which is refined from three herbal extracts (Astragalus, Ginseng and Matrine). PURPOSE To systematically evaluate the effect of combination treatment of platinum-based chemotherapy and KAI on patients with advanced non-small-cell lung cancer (NSCLC). STUDY DESIGN A meta-analysis of randomized clinical trials. MATERIALS AND METHODS The randomized controlled trials (RCTs) about stage Ⅲ-Ⅳ NSCLC using KAI combined platinum-based chemotherapy were electronically retrieved from eight electronic databases up to July 2021. We applied RevMan 5.4, Stata 16.0, TSA 0.9.5.10 Beta and GRADE Pro-GDT to evaluate the quality of the included RCTs and perform the meta-analysis. RESULTS 19 RCTs were included, consisting a total sample size of 1,389 cases. Meta-analysis revealed that compared with chemotherapy alone, KAI combined with platinum-based chemotherapy was associated with significantly higher objective response rate (ORR) [RR = 1.36, 95%CI (1.21,1.54), p< 0.00001], higher disease control rate (DCR) [RR = 1.15, 95%CI (1.09,1.21), p< 0.00001], greater Karnofsky performance status (KPS) [RR = 1.75, 95%CI (1.41,2.18), p< 0.00001], lower white blood cell toxicity [RR = 0.67, 95%CI (0.55,0.82), p = 0.0001], lower platelet toxicity [RR = 0.60, 95%CI (0.47,0.75), P < 0.0001], and lower incidence of vomiting [RR = 0.66, 95%CI (0.57,0.76), p< 0.00001]. In terms of the immune function, KAI united with chemotherapy significantly raised the ratio of CD3+ cells [MD = 10.65, 95%CI (8.21,13.09), p< 0.00001], CD4+ cells [MD = 7.67, 95%CI (6.31,9.03), p< 0.00001], NK cells [MD = 4.97, 95%CI (3.03,6.92), p< 0.00001], and CD4+/ CD8+ [MD = 0.32, 95%CI (0.19,0.45), p< 0.00001], and decreased the percentage of CD8+ cells [MD = -5.56, 95%CI (-7.51,-3.61), p< 0.00001]. CONCLUSIONS This meta-analysis identified that the combination treatment of KAI and platinum-based chemotherapy was more beneficial to patients with advanced NSCLC when compared to chemotherapy alone, which could significantly improve the clinical efficacy, enhance the immune function, and reduce chemotherapy toxicity. Our study provides a theoretical basis and treatment guidance for patients with NSCLC.
Collapse
Affiliation(s)
- Dongwei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Fanchao Feng
- Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Zhichao Wang
- Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Respiratory and Critical Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
49
|
Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z, Yang Y. Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114350. [PMID: 34157326 DOI: 10.1016/j.jep.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus is a medicinal herb used in China for the prevention and treatment of diseases such as diabetes and cancer. As one of the main active ingredients of astragalus, Astragaloside IV (AS-IV) has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects. AIM OF THE STUDY Different phosphorylated forms of Smad3 differentially regulate the progression of hepatic carcinoma. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) and activation of the Nrf2/HO-1 pathway inhibits hepatic carcinoma, while phosphorylation of the linker region of Smad3 (pSmad3L) promotes progression. Thus, pSmad3C/3L and Nrf2/HO-1 pathways are potential targets for drug of anti-cancer development. AS-IV is anti-apoptotic and can inhibit hepatocellular carcinoma cell (HCC) proliferation, invasion, and tumor growth in nude mice. However, it is not clear whether AS-IV has a therapeutic effect on inhibiting the progression of primary liver cancer by regulating the pSmad3C/3L and Nrf2/HO-1 pathway. The purpose of this study is to investigate whether AS-IV inhibits hepatocellular carcinoma by regulating pSmad3C/3L and Nrf2/HO-1 pathway. MATERIALS AND METHODS primary liver cancer in mice induced by DEN/CCl4/C2H5OH (DCC) and HSC-T6/HepG2 cell models activated by TGF-β1 was investigated for the mechanisms of AS-IV. In vivo assays included liver biopsy, histopathology and post-mortem analysis included immunohistochemistry, immunofluorescent, and Western blotting analysis, and in vitro assays included immunofluorescent, and Western blotting analysis. RESULTS AS-IV significantly inhibited the development of primary liver cancer, reflecting improved liver biopsy, histopathology. The incidence and multiplicity of primary liver cancer were markedly decreased by AS-IV treatment at the 20th week. AS-IV had observable effects on the TGF-β1/Smad and Nrf2/HO-1 expression in vivo, especially up-regulated pSmad3C, pNrf2, HO-1, and NQO1, while it down-regulated pSmad2C, pSmad2L, pSmad3L, PAI-1, and α-SMA at the 12th week and the 20th week. Furthermore, in vitro analysis further confirmed that AS-IV regulated the expression of pSmad3C/3L and Nrf2/HO-1 pathway in HSC-T6 and HepG2 cells activated by TGF-β1. CONCLUSION AS-IV administration delays the occurrence of primary liver cancer by continually suppressing the development of fibrosis, the mechanism of the therapeutic effect involving the regulation of the pSmad3C/3L and Nrf2/HO-1 pathways, especially in regulation reversibility and antagonism of pSmad3C and pSmad3L and promoting the phosphorylation of Nrf2.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Lili Li
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhenghao Shi
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Wenjing Xu
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Qin Wang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yinghao He
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhirui Fang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|