1
|
Shi S, Pi L, Hou Z, He L, Wang X, Guo L. Batch effect correction for LIBS-FTIR spectral fusion in breast cancer serum detection based on gradient reversal adversarial network. Talanta 2025; 295:128324. [PMID: 40398041 DOI: 10.1016/j.talanta.2025.128324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Breast cancer is the most prevalent malignancy among women, necessitating rapid, non-invasive, and cost-effective diagnostic technologies for early detection. Spectroscopic techniques like laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared spectroscopy (FTIR) have shown promise in the area. However, batch effects caused by factors like operator variability and instrument fluctuations can compromise the generalization ability of trained models across different sample batches. In this study, we combined LIBS and FTIR to analyze breast cancer serum samples from different batches and developed a Gradient Reversal Adversarial Network (GRAN) to correct batch effects. The GRAN model incorporated an adversarial mechanism between a batch classifier and a label classifier, enabling it to learn batch-invariant features. The results demonstrated that GRAN substantially enhanced classification accuracy across different batches, achieving a test accuracy of 89.7 % when trained on one batch and tested on another. This represents a significant improvement over traditional models, which achieved test accuracies of 63.7 % under comparable conditions. The findings of this research lay the foundation for a robust and non-invasive breast cancer detection method by leveraging the GRAN model for spectral fusion.
Collapse
Affiliation(s)
- Shengqun Shi
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Lingling Pi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zehai Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Lixin He
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
2
|
Zheng L, Wang J, Han S, Zhong L, Liu Z, Li B, Zhang R, Zhou L, Zheng X, Liu Z, Zeng C, Li R, Zou Y, Wang L, Wu Y, Kang T. The KLF16/MYC feedback loop is a therapeutic target in bladder cancer. J Exp Clin Cancer Res 2024; 43:303. [PMID: 39551759 PMCID: PMC11571712 DOI: 10.1186/s13046-024-03224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a common malignancy characterized by dysregulated transcription and a lack of effective therapeutic targets. In this study, we aimed to identify and evaluate novel targets with clinical potential essential for tumor growth in BLCA. METHODS CRISPR-Cas9 screening was used to identify transcription factors essential for bladder cancer cell viability. The biological functions of KLF16 in bladder cancer were investigated both in vitro and in vivo. The regulatory mechanism between KLF16 and MYC was elucidated through a series of analyses, including RNA sequencing, quantitative polymerase chain reaction (qPCR), RNA immunoprecipitation, Western blotting, Mass spectrometry, Dual-luciferase reporter assays, Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing, OptoDroplets assays, and RNA stability assay. The clinical relevance of KLF16 and MYC in bladder cancer was evaluated through analyses of public databases and immunohistochemistry. RESULTS Krüppel-like factor 16 (KLF16) was essential for BLCA cell viability. Elevated expression of KLF16 was observed in bladder cancer tissues, and higher expression levels of KLF16 were correlated with poor progression-free survival (PFS) and cancer-specific survival (CSS) probabilities in BLCA patients. Mechanistically, KLF16 mRNA competed with the mRNA of dual-specificity phosphatase 16 (DUSP16) for binding to the RNA-binding protein, WW domain binding protein 11 (WBP11), resulting in destabilization of the DUSP16 mRNA. This, in turn, led to activation of ERK1/2, which stabilized the MYC protein. Furthermore, KLF16 interacted with MYC to form nuclear condensates, thereby enhancing MYC's transcriptional activity. Additionally, MYC transcriptionally upregulated KLF16, creating a positive feedback loop between KLF16 and MYC that amplified their oncogenic functions. Targeting this loop with bromodomain inhibitors, such as OTX015 and ABBV-744, suppressed the transcription of both KLF16 and MYC, resulting in reduced BLCA cell viability and tumor growth, as well as increased sensitivity to chemotherapy. CONCLUSIONS Our study revealed the crucial role of the KLF16/MYC regulatory axis in modulating tumor growth and chemotherapy sensitivity in BLCA, suggesting that combining bromodomain inhibitors, such as OTX015 or ABBV-744, with DDP or gemcitabine could be a promising therapeutic intervention for BLCA patients.
Collapse
Affiliation(s)
- Lisi Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shan Han
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Center of Digestive Disease, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Zefu Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ruhua Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liwen Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xianchong Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Cuiling Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ruonan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yezi Zou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liqin Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Yuanzhong Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Tiebang Kang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Bao L, Gong Y, Che Y, Li Y, Xu T, Chen J, Wang S, Tan Z, Huang P, Pan Z, Ge M. Maintenance of magnesium homeostasis by NUF2 promotes protein synthesis and anaplastic thyroid cancer progression. Cell Death Dis 2024; 15:656. [PMID: 39242581 PMCID: PMC11379715 DOI: 10.1038/s41419-024-07041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Thyroid cancer is the most frequently observed endocrine-related malignancy among which anaplastic thyroid cancer (ATC) is the most fatal subtype. The synthesis of protein is active to satisfy the rapid growth of ATC tumor, but the mechanisms regulating protein synthesis are still unknown. Our research revealed that kinetochore protein NUF2 played an essential role in protein synthesis and drove the progression of ATC. The prognosis of patients with thyroid carcinoma was positively correlated with high NUF2 expression. Depletion of NUF2 in ATC cells notably inhibited the proliferation and induced apoptosis, while overexpression of NUF2 facilitated ATC cell viability and colony formation. Deletion of NUF2 significantly suppressed the growth and metastasis of ATC in vivo. Notably, knockdown of NUF2 epigenetically inhibited the expression of magnesium transporters through reducing the abundance of H3K4me3 at promoters, thereby reduced intracellular Mg2+ concentration. Furthermore, we found the deletion of NUF2 or magnesium transporters significantly inhibited the protein synthesis mediated by the PI3K/Akt/mTOR pathway. In conclusion, NUF2 functions as an emerging regulator for protein synthesis by maintaining the homeostasis of intracellular Mg2+, which finally drives ATC progression.
Collapse
Affiliation(s)
- Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Gong
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yulu Che
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Tong Xu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinming Chen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Shanshan Wang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, China.
| | - Zongfu Pan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, China.
| |
Collapse
|
4
|
Huang L, Lin R, Chen J, Qi Y, Lin L. Magnesium Ion: A New Switch in Tumor Treatment. Biomedicines 2024; 12:1717. [PMID: 39200180 PMCID: PMC11351748 DOI: 10.3390/biomedicines12081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The magnesium ion is an essential cation in the human body and participates in numerous physiological activities. A deficiency in magnesium ions is closely associated with tumor development, and supplementation with magnesium ions has been shown to partially inhibit tumor growth. However, the specific mechanisms by which magnesium ions suppress tumor proliferation remain unclear. Currently, studies have revealed that mitochondria may serve as a crucial intermediate link in the regulation of tumors by magnesium ions. Mitochondria might intervene in the proliferation and invasion of tumor cells by modulating energy metabolism and oxidative stress levels. Regrettably, there has been no comprehensive review of the role of magnesium in cancer therapy to date. Therefore, this article provides a comprehensive scrutiny of the relationship between magnesium ions and tumors, aiming to offer insights for clinical tumor treatment strategies involving magnesium ion intervention.
Collapse
Affiliation(s)
- Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China;
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Experimental Teaching Center of Basic Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Jiaxi Chen
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
5
|
Chen N, Wu S, Zhi K, Zhang X, Guo X. ZFP36L1 controls KLF16 mRNA stability in vascular smooth muscle cells during restenosis after vascular injury. J Mol Cell Cardiol 2024; 192:13-25. [PMID: 38653384 DOI: 10.1016/j.yjmcc.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-β, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.
Collapse
Affiliation(s)
- Ningheng Chen
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Wu
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Zhi
- Department of Vascular surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaoping Zhang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xueli Guo
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
7
|
Nakashiro KI, Tokuzen N, Saika M, Shirai H, Kuribayashi N, Goda H, Uchida D. MicroRNA-1289 Functions as a Novel Tumor Suppressor in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4138. [PMID: 37627167 PMCID: PMC10452613 DOI: 10.3390/cancers15164138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, numerous tumor-suppressive microRNAs (TS-miRs) have been identified in human malignancies. Here, we attempted to identify novel TS-miRs in oral squamous cell carcinoma (OSCC). First, we transfected human OSCC cells individually with 968 synthetic miRs mimicking human mature miRs individually, and the growth of these cells was evaluated using the WST-8 assay. Five miR mimics significantly reduced the cell growth rate by less than 30%, and the miR-1289 mimic had the most potent growth inhibitory effect among these miRs. Subsequently, we assessed the in vivo growth-inhibitory effects of miR-1289 using a mouse model. The administration of the miR-1289 mimic-atelocollagen complex significantly reduced the size of subcutaneously xenografted human OSCC tumors. Next, we investigated the expression of miR-1289 in OSCC tissues using reverse transcription-quantitative PCR. The expression level of miR-1289 was significantly lower in OSCC tissues than in the adjacent normal oral mucosa. Furthermore, 15 genes were identified as target genes of miR-1289 via microarray and Ingenuity Pathway Analysis (IPA) microRNA target filtering. Among these genes, the knockdown of magnesium transporter 1 (MAGT1) resulted in the most remarkable cell growth inhibition in human OSCC cells. These results suggested that miR-1289 functions as a novel TS-miR in OSCC and may be a useful therapeutic tool for patients with OSCC.
Collapse
Affiliation(s)
- Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon 791-0295, Japan; (N.T.); (M.S.); (H.S.); (N.K.); (H.G.); (D.U.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|