1
|
Islam W, Tsutsuki H, Ono K, Harada A, Shinozaki K, Niidome T, Fang J, Sawa T. Structural Determination of the Nanocomplex of Borate with Styrene-Maleic Acid Copolymer-Conjugated Glucosamine Used as a Multifunctional Anticancer Drug. ACS APPLIED BIO MATERIALS 2022; 5:5953-5964. [PMID: 36480740 DOI: 10.1021/acsabm.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of effective anticancer drugs is essential for chemotherapy that specifically targets cancer tissues. We recently synthesized a multifunctional water-soluble anticancer polymer drug consisting of styrene-maleic acid copolymer (SMA) conjugated with glucosamine and boric acid (BA) (SGB complex). It demonstrated about 10 times higher tumor-selective accumulation compared with accumulation in normal tissues because of the enhanced permeability and retention effect, and it inhibited tumor growth via glycolysis inhibition, mitochondrial damage, and thermal neutron irradiation. Gaining insight into the anticancer effects of this SGB complex requires a determination of its structure. We therefore investigated the chemical structure of the SGB complex by means of nuclear magnetic resonance, infrared (IR) spectroscopy, and liquid chromatography-mass spectrometry. To establish the chemical structure of the SGB complex, we synthesized a simple model compound─maleic acid-glucosamine (MAG) conjugate─by using a maleic anhydride (MA) monomer unit instead of the SMA polymer. We obtained two MAG-BA complexes (MAGB) with molecular weights of 325 and 343 after the MAG reaction with BA. We confirmed, by using IR spectroscopy, that MAGB formed a stable complex via an amide bond between MA and glucosamine and that BA bound to glucosamine via a diol bond. As a result of this chemical design, identified via analysis of MAGB, the SGB complex can release BA and demonstrate toxicity to cancer cells through inhibition of lactate secretion in mild hypoxia that mimics the tumor microenvironment. For clinical application of the SGB complex, we confirmed that this complex is stable in the presence of serum. These findings confirm that our design of the SGB complex has various advantages in targeting solid cancers and exerting therapeutic effects when combined with neutron irradiation.
Collapse
Affiliation(s)
- Waliul Islam
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kozo Shinozaki
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Maeda H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery-Personal Remarks and Future Prospects. J Pers Med 2021; 11:jpm11030229. [PMID: 33810037 PMCID: PMC8004895 DOI: 10.3390/jpm11030229] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
This Special Issue on the enhanced permeability and retention (EPR) effect commemorates the 35th anniversary of its discovery, the original 1986 Matsumura and Maeda finding being published in Cancer Research as a new concept in cancer chemotherapy. My review here describes the history and heterogeneity of the EPR effect, which involves defective tumor blood vessels and blood flow. We reported that restoring obstructed tumor blood flow overcomes impaired drug delivery, leading to improved EPR effects. I also discuss gaps between small animal cancers used in experimental models and large clinical cancers in humans, which usually involve heterogeneous EPR effects, vascular abnormalities in multiple necrotic foci, and tumor emboli. Here, I emphasize arterial infusion of oily formulations of nanodrugs into tumor-feeding arteries, which is the most tumor-selective drug delivery method, with tumor/blood ratios of 100-fold. This method is literally the most personalized medicine because arterial infusions differ for each patient, and drug doses infused depend on tumor size and anatomy in each patient. Future developments in EPR effect-based treatment will range from chemotherapy to photodynamic therapy, boron neutron capture therapy, and therapies for free radical diseases. This review focuses on our own work, which stimulated numerous scientists to perform research in nanotechnology and drug delivery systems, thereby spawning a new cancer treatment era.
Collapse
Affiliation(s)
- Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan;
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan
- Tohoku University, Sendai 980-8572, Japan
- Osaka University Medical School, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Wang Z, Sau S, Alsaab HO, Iyer AK. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1441-1454. [PMID: 29678787 DOI: 10.1016/j.nano.2018.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/17/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive tumor subtype, lacking estrogen, progesterone and human epidermal growth factor-2 (HER-2) receptors. Thus, early detection and targeted therapy of TNBC is an urgent need. Herein, we have developed a CD44 targeting Hyaluronic Acid (HA) decorated biocompatible oligomer, containing FDA approved vitamin E TPGS and Styrene Maleic Anhydride (SMA) (HA-SMA-TPGS) for targeting TNBC. The self-assembling HA-SMA-TPGS was encapsulated with poorly water soluble, potent curcumin analogue (CDF) to form nanomicelles (NM), HA-SMA-TPGS-CDF has demonstrated excellent nanoparticle characteristics for parenteral delivery. The targeted NM can selectively kill TNBC cells through CD44 mediated apoptosis pathway. Tumor imaging using phase-2 clinical trial near infrared (NIR)-fluorescent dye (S0456) conjugate, HA-SMA-TPGS-S0456 showed excellent TNBC tumor accumulation with minimum liver and spleen uptake. To our best of knowledge, for the first time, we are reporting a promising platform for CD44 mediated multimodal NIR imaging and cytotoxin delivery to TNBC.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
4
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
5
|
Kesharwani P, Banerjee S, Padhye S, Sarkar FH, Iyer AK. Hyaluronic Acid Engineered Nanomicelles Loaded with 3,4-Difluorobenzylidene Curcumin for Targeted Killing of CD44+ Stem-Like Pancreatic Cancer Cells. Biomacromolecules 2015; 16:3042-53. [PMID: 26302089 DOI: 10.1021/acs.biomac.5b00941] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer stem-like cells (CSLCs) play a pivotal role in acquiring multidrug resistant (MDR) phenotypes. It has been established that pancreatic cancers overexpressing CD44 receptors (a target of hyaluronic acid; HA) is one of the major contributors for causing MDR. Therefore, targeted killing of CD44 expressing tumor cells using HA based active targeting strategies may be beneficial for eradicating MDR-pancreatic cancers. Here, we report the synthesis of a new HA conjugate of copoly(styrene maleic acid) (HA-SMA) that could be engineered to form nanomicelles with a potent anticancer agent, 3,4-difluorobenzylidene curcumin (CDF). The anticancer activity of CDF loaded nanomicelles against MiaPaCa-2 and AsPC-1 human pancreatic cancer cells revealed dose-dependent cell killing. Results of cellular internalization further confirmed better uptake of HA engineered nanomicelles in triple-marker positive (CD44+/CD133+/EpCAM+) pancreatic CSLCs compared with triple-marker negative (CD44-/CD133-/EpCAM-) counterparts. More importantly, HA-SMA-CDF exhibited superior anticancer response toward CD44+ pancreatic CSLCs. Results further confirmed that triple-marker positive cells treated with HA-SMA-CDF caused significant reduction in CD44 expression and marked inhibition of NF-κB that in-turn can mitigate their proliferative and invasive behavior. Conclusively, these results suggest that the newly developed CD44 targeted nanomicelles may have great implications in treating pancreatic cancers including the more aggressive pancreatic CSLCs.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
| | - Sanjeev Banerjee
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine , 740 HWCRC, Detroit, Michigan 48201, United States
| | - Subhash Padhye
- Interdisciplinary Science & Technology Research Academy, Department of Chemistry, Abeda Inamdar College, Azam Campus, University of Pune , Pune 411001, India
| | - Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine , 740 HWCRC, Detroit, Michigan 48201, United States
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
6
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
7
|
Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 2006; 58:1597-621. [PMID: 17126450 PMCID: PMC1853357 DOI: 10.1016/j.addr.2006.09.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 09/29/2006] [Indexed: 12/20/2022]
Abstract
Synthetic polymers and nanomaterials display selective phenotypic effects in cells and in the body signal transduction mechanisms involved in inflammation, differentiation, proliferation, and apoptosis. When physically mixed or covalently conjugated with cytotoxic agents, bacterial DNA or antigens, polymers can drastically alter specific genetically controlled responses to these agents. These effects, in part, result from cooperative interactions of polymers and nanomaterials with plasma cell membranes and trafficking of polymers and nanomaterials to intracellular organelles. Cells and whole organism responses to these materials can be phenotype or genotype dependent. In selected cases, polymer agents can bypass limitations to biological responses imposed by the genotype, for example, phenotypic correction of immune response by polyelectrolytes. Overall, these effects are relatively benign as they do not result in cytotoxicity or major toxicities in the body. Collectively, however, these studies support the need for assessing pharmacogenomic effects of polymer materials to maximize clinical outcomes and understand the pharmacological and toxicological effects of polymer formulations of biological agents, i.e. polymer genomics.
Collapse
Affiliation(s)
- Alexander V Kabanov
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Durham Research Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA.
| |
Collapse
|
8
|
Avital A, Shapiro E, Doviner V, Sherman Y, Margel S, Tsuberi M, Springer C. Polystyrene microspheres as a specific marker for the diagnosis of aspiration in hamsters. Am J Respir Cell Mol Biol 2002; 27:511-4. [PMID: 12356586 DOI: 10.1165/rcmb.2002-0028oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The diagnosis of recurrent aspiration in young children is problematic because there is no specific gold standard test to be used. In the present work, normal saline or a suspension of white polystyrene microspheres in normal saline was instilled into hamsters' trachea (n = 42), and bronchoalveolar lavage (BAL) cytology, microsphere index (total microspheres/100 macrophages), and lung histology were followed for 90 d. Naive animals (n = 6) had no tracheal instillation. On Days 1, 3, 10, 32, 60, and 90 after tracheal instillation, animals were killed (saline-instilled animals, n = 3; and microsphere-instilled animals, n = 4), and BAL was performed. There was a marked inflammatory response in BAL on Day 1 after tracheal instillation of saline or microsphere suspension. White microspheres were clearly identified within alveolar macrophages in all studied days. Microsphere numbers showed a 50% disappearance rate of 10 d. A mild peribronchial inflammation was noted in lung histology only on Day 1 after instillation. Microspheres were not detected in extrapulmonary organs. We conclude that polystyrene microspheres instilled in hamsters' trachea can be easily identified in BAL macrophages for as long as 3 mo and could potentially be used as a sensitive, specific, and stable marker for the diagnosis of aspiration.
Collapse
Affiliation(s)
- Avraham Avital
- Institute of Pulmonology and Department of Pathology, Hadassah University Hospital and Hadassah-Hebrew University Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kishimoto S, Miyazawa K, Fukushima S, Takeuchi Y. In vitro antitumor activity, intracellular accumulation, and DNA adduct formation of cis-[((1R,2R)-1,2-cyclohexanediamine-N,N')bis(myristato)] platinum (II) suspended in lipiodol. Jpn J Cancer Res 2000; 91:99-104. [PMID: 10744050 PMCID: PMC5926231 DOI: 10.1111/j.1349-7006.2000.tb00865.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SM-11355, cis-[((1R,2R)-1,2-cyclohexanediamine-N,N')bis(myristato)] platinum (II), is a lipophilic platinum complex under clinical development that targets primary hepatocellular carcinoma using Lipiodol as a carrier. SM-11355 was compared with cisplatin (CDDP) using an in vitro evaluation system capable of examining the release characteristics and the cytotoxicity of drugs suspended in Lipiodol. SM-11355 suspended in Lipiodol (SM-11355/Lipiodol) and CDDP suspended in Lipiodol (CDDP/Lipiodol) showed cytotoxic activity against rat ascites hepatoma AH-109A cells in a dose-dependent manner. Their IC50 values following 7-day exposure were 22.3 and 0.40 microg/ml, respectively. Following the subsequent 7-day exposure, from day 7 to day 14 after preparation of the suspension, SM-11355/Lipiodol showed an almost equivalent activity, but CDDP/Lipiodol did not show any activity at all. SM-11355/Lipiodol showed a sustained release into the culture medium over the course of a 14-day exposure. Following the exposure to CDDP/Lipiodol, the platinum concentration in the medium was at its maximum on the first day and remained constant thereafter. Intracellular platinum uptake and formation of platinum-DNA adducts were dependent on the release characteristics of each drug suspension. For SM-11355/Lipiodol, the drug release, intracellular drug uptake, and formation of platinum-DNA adducts over the course of the subsequent 7-day exposure were similar to those observed during the first 7 days. DPC, one of the compounds released from SM-11355/Lipiodol, was taken up by cells and showed formation of platinum-DNA adducts. Thus, this study suggests that SM-11355/Lipiodol may release active platinum compound(s) that bind to nuclear DNA and mediate the cytotoxic activity of SM-11355/Lipiodol.
Collapse
Affiliation(s)
- S Kishimoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University.
| | | | | | | |
Collapse
|