1
|
Viswanathan G, Kirshner HF, Nazo N, Ali S, Ganapathi A, Cumming I, Zhuang Y, Choi I, Warman A, Jassal C, Almeida-Peters S, Haney J, Corcoran D, Yu YR, Rajagopal S. Single-Cell Analysis Reveals Distinct Immune and Smooth Muscle Cell Populations that Contribute to Chronic Thromboembolic Pulmonary Hypertension. Am J Respir Crit Care Med 2023; 207:1358-1375. [PMID: 36803741 PMCID: PMC10595445 DOI: 10.1164/rccm.202203-0441oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Rationale: Chronic thromboembolic pulmonary hypertension (CTEPH) is a sequela of acute pulmonary embolism (PE) in which the PE remodels into a chronic scar in the pulmonary arteries. This results in vascular obstruction, pulmonary microvasculopathy, and pulmonary hypertension. Objectives: Our current understanding of CTEPH pathobiology is primarily derived from cell-based studies limited by the use of specific cell markers or phenotypic modulation in cell culture. Therefore, our main objective was to identify the multiple cell types that constitute CTEPH thrombusy and to study their dysfunction. Methods: Here we used single-cell RNA sequencing of tissue removed at the time of pulmonary endarterectomy surgery from five patients to identify the multiple cell types. Using in vitro assays, we analyzed differences in phenotype between CTEPH thrombus and healthy pulmonary vascular cells. We studied potential therapeutic targets in cells isolated from CTEPH thrombus. Measurements and Main Results: Single-cell RNA sequencing identified multiple cell types, including macrophages, T cells, and smooth muscle cells (SMCs), that constitute CTEPH thrombus. Notably, multiple macrophage subclusters were identified but broadly split into two categories, with the larger group characterized by an upregulation of inflammatory signaling predicted to promote pulmonary vascular remodeling. CD4+ and CD8+ T cells were identified and likely contribute to chronic inflammation in CTEPH. SMCs were a heterogeneous population, with a cluster of myofibroblasts that express markers of fibrosis and are predicted to arise from other SMC clusters based on pseudotime analysis. Additionally, cultured endothelial, smooth muscle, and myofibroblast cells isolated from CTEPH fibrothrombotic material have distinct phenotypes from control cells with regard to angiogenic potential and rates of proliferation and apoptosis. Last, our analysis identified PAR1 (protease-activated receptor 1) as a potential therapeutic target that links thrombosis to chronic PE in CTEPH, with PAR1 inhibition decreasing SMC and myofibroblast proliferation and migration. Conclusions: These findings suggest a model for CTEPH similar to atherosclerosis, with chronic inflammation promoted by macrophages and T cells driving vascular remodeling through SMC modulation, and suggest new approaches for pharmacologically targeting this disease.
Collapse
Affiliation(s)
| | | | - Nour Nazo
- Division of Cardiology, Department of Medicine
| | - Saba Ali
- Division of Cardiology, Department of Medicine
| | | | - Ian Cumming
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Yonghua Zhuang
- Biostatistics Shared Resource, University of Colorado Cancer Center
- Department of Pediatrics, and
| | - Issac Choi
- Division of Cardiology, Department of Medicine
| | | | | | - Susana Almeida-Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - John Haney
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Yen-Rei Yu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina; and
| |
Collapse
|
2
|
The Roles of S100A4 and the EGF/EGFR Signaling Axis in Pulmonary Hypertension with Right Ventricular Hypertrophy. BIOLOGY 2022; 11:biology11010118. [PMID: 35053115 PMCID: PMC8773074 DOI: 10.3390/biology11010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/09/2023]
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary arterial pressure caused by the accumulation of mesenchymal-like cells in the pulmonary vasculature. PH can lead to right ventricular hypertrophy (RVH) and, ultimately, heart failure and death. In PH etiology, endothelial-to-mesenchymal transition (EndMT) has emerged as a critical process governing the conversion of endothelial cells into mesenchymal cells, and S100A4, EGF, and EGFR are implicated in EndMT. However, a potential role of S100A4, EGF, and EGFR in PH has to date not been elucidated. We therefore quantified S100A4, EGF, and EGFR in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH). To determine specificity for unilateral heart disease, the EndMT biomarker signature was further compared between PH patients presenting with RVH and patients suffering from aortic valve stenosis (AVS) with left ventricular hypertrophy. Reduced S100A4 concentrations were found in CTEPH and iPAH patients with RVH. Systemic EGF was increased in CTEPH but not in iPAH, while AVS patients displayed slightly diminished EGF levels. EGFR was downregulated in all patient groups when compared to healthy controls. Longitudinal data analysis revealed no effect of surgical therapies on EndMT markers. Pulmonary thrombo-endarterectomized samples were devoid of S100A4, while S100A4 tissue expression positively correlated with higher grades of Heath–Edwards histopathological lesions of iPAH-derived lung tissue. Histologically, EGFR was not detectable in CTEPH lungs or in iPAH lesions. Together, our data suggest an intricate role for S100A4 and EGF/EGFR in PH with right heart pathology.
Collapse
|
3
|
Alba GA, Atri D, Darbha S, Singh I, Tapson VF, Lewis MI, Chun HJ, Yu YR, Maron BA, Rajagopal S. Chronic Thromboembolic Pulmonary Hypertension: the Bench. Curr Cardiol Rep 2021; 23:141. [PMID: 34410515 DOI: 10.1007/s11886-021-01572-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Chronic thromboembolic pulmonary hypertension (CTEPH) is an uncommon complication of acute pulmonary embolism (PE), in which the red, platelet-rich thrombus does not resolve but forms into an organized yellow, fibrotic scar-like obstruction in the pulmonary vasculature. Here we review the pathobiology of CTEPH. RECENT FINDINGS Our current knowledge has predominantly been informed by studies of human samples and animal models that are inherently limited in their ability to recapitulate all aspects of the disease. These studies have identified alterations in platelet biology and inflammation in the formation of a scar-like thrombus that comprised endothelial cells, myofibroblasts, and immune cells, along with a small vessel pulmonary arterial hypertension-like vasculopathy. The development of CTEPH-specific therapies is currently hindered by a limited knowledge of its pathobiology. The development of new CTEPH medical therapies will require new insights into its pathobiology that bridge the gap from bench to bedside.
Collapse
Affiliation(s)
- George A Alba
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Deepak Atri
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sriranjani Darbha
- College of Natural Sciences, The University of Texas, Austin, TX, USA
| | - Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Victor F Tapson
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael I Lewis
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung J Chun
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Yen-Rei Yu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Section of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Sanada TJ, Sakao S, Naito A, Ishibashi-Ueda H, Suga M, Shoji H, Miwa H, Suda R, Iwasawa S, Tada Y, Ishida K, Tanabe N, Tatsumi K. Characterization of pulmonary intimal sarcoma cells isolated from a surgical specimen: In vitro and in vivo study. PLoS One 2019; 14:e0214654. [PMID: 30925179 PMCID: PMC6440640 DOI: 10.1371/journal.pone.0214654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022] Open
Abstract
Pulmonary intimal sarcoma (PIS) constitutes a rare sarcoma originating from the intimal cells of pulmonary arteries. The pathogenesis of PIS remains to be elucidated and specific treatments have not been established; therefore, prognosis is generally poor. The purpose of our study was to isolate and characterize PIS cells from a specimen resected from a patient with PIS. The surgical specimen was minced and incubated, and spindle-shaped and small cells were successfully isolated and designated as PIS-1. PIS-1 cells at passages 8–9 were used for all in vitro and in vivo experiments. Immunocytochemistry showed that PIS-1 cells were positive for vimentin, murine double minute 2, and CD44 and negative for α-smooth muscle actin, CD31, von Willebrand factor, and desmin. PIS-1 cells exhibited the hallmarks of malignant cells including the potential for autonomous proliferation, anchorage-independent growth, invasion, genetic instability, and tumorigenicity in severe combined immunodeficiency mice. The PIS-1 cells highly expressed tyrosine kinase receptors such as platelet-derived growth factor receptor, and vascular endothelial growth factor receptor 2. Pazopanib, a multi-targeted tyrosine kinase inhibitor, suppressed the proliferation of PIS-1 cells in vitro and the growth of tumors formed from xenografted PIS-1 cells. A PIS cell line was thus successfully established. The PIS-1 cells highly expressed tyrosine kinase receptors, which may be a target for treatment of PIS.
Collapse
Grants
- Japan Society for the Promotion of Science
- research grants to the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group of the Ministry of Health, Labor, and Welfare, Japan, a grant to the Pulmonary Hypertension Research Group
- research grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- a grant to The Intractable Respiratory Diseases and Pulmonary Hypertension Research Group of the Ministry of Health, Labor, and Welfare, Japan
- Japan Society for the Promotion of Science KAKENHI
Collapse
Affiliation(s)
- Takayuki Jujo Sanada
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba City, Japan
- * E-mail:
| | - Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Akira Naito
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Advancing Research on Treatment Strategies for respiratory disease, Graduate School of Medicine, Chiba University Chiba City, Japan
| | | | - Masaki Suga
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Hiroki Shoji
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Hideki Miwa
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Rika Suda
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Shunichiro Iwasawa
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Advancing Research on Treatment Strategies for respiratory disease, Graduate School of Medicine, Chiba University Chiba City, Japan
| | - Yuji Tada
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Keiichi Ishida
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Nobuhiro Tanabe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
- Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba City, Japan
| |
Collapse
|
5
|
Voelkel NF, Bogaard HJ. Adding complexity to plexogenic arteriopathy. Eur Respir J 2018; 48:1553-1555. [PMID: 27903686 DOI: 10.1183/13993003.01867-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Norbert F Voelkel
- School of Pharmacology, Virginia Commonwealth University, Richmond, VA, USA
| | - Harm Jan Bogaard
- Dept of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bochenek M, Rosinus N, Lankeit M, Hobohm L, Bremmer F, Schütz E, Klok F, Horke S, Wiedenroth C, Münzel T, Lang I, Mayer E, Konstantinides S, Schäfer K. From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thromb Haemost 2017; 117:769-783. [DOI: 10.1160/th16-10-0790] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 01/31/2023]
Abstract
SummaryThe pathomechanisms underlying the development of thrombofibrotic pulmonary artery occlusions in Chronic Thromboembolic Pulmonary Hypertension (CTEPH) are largely unknown. The aim of this study was to allocate distinct cellular processes playing a role in thrombus resolution, such as inflammation, hypoxia, proliferation, apoptosis and angiogenesis, to different stages of thrombofibrotic remodelling. A total of 182 pulmonary endarterectomy (PEA) specimens were collected from 31 CTEPH patients. To facilitate co-localisation, Tissue MicroArrays were prepared and processed for (immuno)-histochemistry and confocal fluorescence microscopy. Murine venous thrombus formation and resolution was examined after inferior vena cava ligation. PEA tissues exhibited five morphologically distinct regions predominantly consisting of either fibrin-, erythrocyte- or extracellular matrix-rich thrombus, myofibroblasts, vessels or fibrotic tissue, and were found to resemble chronological stages of thrombus resolution in mice. Cellularity was highest in vessel-rich regions, and numerous cells were strongly positive for HIF1α or HIF2α as well as markers of activated VEGF signalling, including endothelial nitric oxide synthase. On the other hand, negative regulators of angiogenic growth factor signalling and reactive oxygen species were also highly expressed. Immune cells, primarily macrophages of the M2 subtype and CD117 haematopoietic progenitors were detected and highest in vascularised regions. Our findings demonstrate the simultaneous presence of different stages of thrombus organisation and suggest that hypoxia-induced endothelial, mesenchymal and immune cell activation may contribute to thrombofibrosis in CTEPH. This systematic histological characterisation of the material obstructing pulmonary vessels in CTEPH may provide a valuable basis for further studies aimed at determining causal factors underlying this disease.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
7
|
Matthews DT, Hemnes AR. Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension. Pulm Circ 2016; 6:145-54. [PMID: 27252839 DOI: 10.1086/686011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by fibrotic obstruction of the proximal pulmonary arteries, and it is believed to result from incomplete thrombus resolution after acute pulmonary embolism. While treatment for this condition with surgery and medical therapy has improved outcomes, our understanding of the molecular mechanisms underlying CTEPH is incomplete. Numerous risk factors have been associated with the development of CTEPH, including but not limited to acquired thrombophilias and chronic inflammatory states. A minority of patients with CTEPH have an abnormal fibrin structure that may delay thrombus resolution. Recently, examination of resected scar material in patients with CTEPH has suggested that deficient angiogenesis may play a role in thrombus nonresolution, and there is increasing interest in factors that drive intravascular scar formation. An additional challenge in CTEPH research is understanding the etiology and implications of the small-vessel disease present in many patients. Future work will likely be directed at understanding the pathways important to disease pathogenesis through further examinations of resected tissue material, continued work on animal models, and genomic approaches to identify alterations in gene expression or gene variants that may distinguish CTEPH from other forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Daniel T Matthews
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Local and systemic RAGE axis changes in pulmonary hypertension: CTEPH and iPAH. PLoS One 2014; 9:e106440. [PMID: 25188497 PMCID: PMC4154707 DOI: 10.1371/journal.pone.0106440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The molecular determinants of chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH) remain poorly understood. The receptor for advanced glycation endproducts (RAGE) and its ligands: HMGB1 and S100A9 are involved in inflammatory disorders. We sought to investigate the role of the RAGE axis in patients with CTEPH undergoing pulmonary endarterectomy (PEA), iPAH undergoing lung transplantation (LuTX). The high pulmonary vascular resistance in CTEPH/iPAH results in pressure overload of the right ventricle. We compared sRAGE measurements to that of patients with aortic valve stenosis (AVS) - pressure overload of the left ventricle. METHODS We enrolled patients with CTEPH(26), iPAH(15), AVS(15) and volunteers(33). Immunohistochemistry with antibodies to RAGE and HMGB1 was performed on PEA specimens and lung tissues. We employed enzyme-linked immunosorbent assays to determine the concentrations of sRAGE, esRAGE, HMGB1 and S100A9 in serum of volunteers and patients with CTEPH, iPAH, AVS before and after PEA, LuTX and aortic valve replacement (AVR). RESULTS In endarterectomised tissues from patients with CTEPH RAGE and HMGB1 were identified in myofibroblasts (α-SMA+vimentin+CD34-), recanalizing vessel-like structures of distal myofibrotic tissues and endothelium of neointima. RAGE was differentially expressed in prototypical Heath Edwards lesions in iPAH. We found significantly increased serum concentrations of sRAGE, esRAGE and HMGB1 in CTEPH. In iPAH, sRAGE and esRAGE were significantly higher than in controls. Serum concentrations of sRAGE were significantly elevated in iPAH(p<0.001) and CTEPH(p = 0.001) compared to AVS. Serum sRAGE was significantly higher in iPAH compared to CTEPH(p = 0.042) and significantly reduced in AVS compared to controls(p = 0.001). There were no significant differences in sRAGE serum concentrations before and after surgical therapy for CTEPH, iPAH or AVS. CONCLUSIONS Our data suggest a role for the RAGE pathway in the pathophysiology of CTEPH and iPAH. PEA improves the local control of disease but may not influence the systemic inflammatory mechanisms in CTEPH patients through the RAGE pathway.
Collapse
|
9
|
Jujo T, Sakao S, Tsukahara M, Kantake M, Kantake S, Maruoka M, Tanabe N, Masuda M, Tatsumi K. The role of matrix metalloproteinase in the intimal sarcoma-like cells derived from endarterectomized tissues from a chronic thromboembolic pulmonary hypertension patient. PLoS One 2014; 9:e87489. [PMID: 24489925 PMCID: PMC3905027 DOI: 10.1371/journal.pone.0087489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/21/2013] [Indexed: 01/26/2023] Open
Abstract
Sarcoma-like cells (SCLs) were derived from endarterectomized tissue of a single chronic thromboembolic pulmonary hypertension (CTEPH) patient during incubation of those thrombi at second passage as described at our previous report. These cells had malignant potential, with an increased expression of matrix metalloproteinase-14 (MMP-14), leading to tumor emboli within pulmonary arteries in in vivo studies. The purpose of this study was to perform a more detailed evaluation of the characteristics of SCLs, and to elucidate the role of the increased expression of MMP-14 expression in the growth and death of these cells. In order to elucidate the characteristics of SCLs and to confirm the protein expression of MMP-14, three-dimentional culture, invasion assays, a Western blot analysis and immunohistochemical studies were performed. To examine the role of MMP-14 in tumorigenesis, the metalloproteinase inhibitor, batimastat, was administered to SCID mice which were subcutaneously injected with SCLs. Those mice were sacrificed on day 14 and the tumor volume was evaluated. A Western blot analysis showed the increased expression of MMP-14 in comparison to the expression in lung adenocarcinoma cells (A549). Immunohistochemistry showed that SCLs were positive for vimentin, MMP-14, MMP-2 and CD44. However, endothelial markers, such as CD31 and von Willebrand factor (vWF), were negative. The in vivo studies demonstrated that batimastat could suppress the growth of the subcutaneous tumors formed by the SCLs. This study suggested that MMPs had critical roles on the pathological activities of SCLs and that batimastat might have anti-proliferative and anti-invasive effects on these cells.
Collapse
Affiliation(s)
- Takayuki Jujo
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Masanori Tsukahara
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | | | - Seiji Kantake
- Respirology, Kimitsu Chuo Hospital, Sakurai, Kisarazu City, Japan
| | - Miki Maruoka
- Respirology, National Hospital Organization Chiba Medical Center, Tsubakimori, Chuo-ku, Chiba, Japan
| | - Nobuhiro Tanabe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| | - Masahisa Masuda
- Cardiovascular Surgery, National Hospital Organization Chiba Medical Center, Tsubakimori, Chuo-ku, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Inohana Chuo-Ku, Chiba, Japan
| |
Collapse
|