1
|
Huang H, Xu Q, Zhang Y, Zhou Y, Ma K, Luo Y. miR-628-5p is a Potential Novel Prognosis Biomarker, Associated with Immune Infiltration in Bladder Urothelial Carcinoma. Curr Pharm Des 2023; 29:2477-2488. [PMID: 37916623 DOI: 10.2174/0113816128254621231017062923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND microRNA-628-5p (miR-628-5p) has a significant impact on certain types of cancer. The precise function of miR-628-5p in the context of bladder urothelial carcinoma (BLCA) remains ambiguous. OBJECTIVE We aimed to investigate the role of miR-628-5p in BLCA. METHODS The samples were collected from The Cancer Genome Atlas (TCGA). Statistics were employed to evaluate the correlation and predictive significance of miR-628-5p. We analyzed the target genes and regulatory network of miR-628-5p and the correlation between miR-628-5p and immune infiltration. The expression of miR-628-5p in BLCA cells was confirmed by quantitative reverse-transcription PCR (qRT-PCR). RESULTS miR-628-5p exhibited differential expression across various types of cancer. There was a significant association between high expression of miR-628-5p and primary therapy outcome (p < 0.05). High expression of miR-628-5p was observed to be associated with poorer overall survival (HR: 1.42; 95% CI: 1.06-1.90; p = 0.02), progress free survival (HR: 1.57; 95% CI: 1.17-2.11; p = 0.003), and disease specific survival (HR: 1.83; 95% CI: 1.28-2.62; p = 0.001) in BLCA. miR-628-5p was an independent prognostic factor in BLCA and may be involved in the development of the disease through various pathways, including focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, and MAPK signaling pathway, and among others. miR-628-5p expression was significantly correlated with immune infiltration in BLCA patients. Compared to normal bladder epithelial cells, BLCA cell lines exhibited a significant upregulation of miR-628-5p. CONCLUSION It is possible that miR-628-5p could serve as a hopeful therapeutic target and prognostic biomarker for individuals with BLCA.
Collapse
Affiliation(s)
- Hong Huang
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yizhou Zhou
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Kaiqun Ma
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yingxun Luo
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| |
Collapse
|
2
|
Dysregulation of miRISC Regulatory Network Promotes Hepatocellular Carcinoma by Targeting PI3K/Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911300. [PMID: 36232606 PMCID: PMC9569668 DOI: 10.3390/ijms231911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the third leading malignancy worldwide, causing high mortality in adults and children. The neuropathology-associated gene AEG-1 functions as a scaffold protein to correctly assemble the RNA-induced silencing complex (RISC) and optimize or increase its activity. The overexpression of oncogenic miRNAs periodically degrades the target tumor suppressor genes. Oncogenic miR-221 plays a seminal role in the carcinogenesis of HCC. Hence, the exact molecular and biological functions of the oncogene clusters miR-221/AEG-1 axis have not yet been examined widely in HCC. Here, we explored the expression of both miR-221 and AEG-1 and their target/associate genes by qRT-PCR and western blot. In addition, the role of the miR-221/AEG-1 axis was studied in the HCC by flow cytometry analysis. The expression level of the AEG-1 did not change in the miR-221 mimic, and miR-221-transfected HCC cells, on the other hand, decreased the miR-221 expression in AEG-1 siRNA-transfected HCC cells. The miR-221/AEG-1 axis silencing induces apoptosis and G2/M phase arrest and inhibits cellular proliferation and angiogenesis by upregulating p57, p53, RB, and PTEN and downregulating LSF, LC3A, Bcl-2, OPN, MMP9, PI3K, and Akt in HCC cells.
Collapse
|
3
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
4
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Liu X, Zhou Z, Wang Y, Zhu K, Deng W, Li Y, Zhou X, Chen L, Li Y, Xie A, Zeng T, Wang G, Fu B. Downregulation of HMGA1 Mediates Autophagy and Inhibits Migration and Invasion in Bladder Cancer via miRNA-221/TP53INP1/p-ERK Axis. Front Oncol 2020; 10:589. [PMID: 32477928 PMCID: PMC7235162 DOI: 10.3389/fonc.2020.00589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in regulating the development and metastasis of human cancers. MiR-221 is reported to be an oncogene in multiple cancers, including bladder cancer (BC). Deregulation of autophagy is associated with multiple human malignant cancers. Whether and how miR-221 regulates autophagy and how miR-221 has been regulated in BC are poorly understood. This study explored the potential functions and mechanisms of miR-221 in the autophagy and tumorigenesis of BC. We showed that the downregulation of miR-221 induces autophagy via increasing TP53INP1 (tumor protein p53 inducible nuclear protein 1) and inhibits migration and invasion of BC cells through suppressing activation of extracellular signal-regulated kinase (ERK). Furthermore, the expression of miR-221 is regulated by high-mobility group AT-hook 1 (HMGA1) which is overexpressed in BC. And both miR-221 and HMGA1 are correlated with poor patient survival in BC. Finally, the downregulation of HMGA1 suppressed the proliferative, migrative, and invasive property of BC by inducing toxic autophagy via miR-221/TP53INP1/p-ERK axis. Collectively, our findings demonstrate that the downregulation of miR-221 and HMGA1 mediates autophagy in BC, and both of them are valuable therapeutic targets for BC.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - An Xie
- Jiangxi Institute of Urology, Nanchang, China
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
7
|
Cai Z, Zhang F, Chen W, Zhang J, Li H. miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer. Onco Targets Ther 2019; 12:11805-11816. [PMID: 32099386 PMCID: PMC6997227 DOI: 10.2147/ott.s231489] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is an important cancer treatment method. Tumor chemotherapy resistance is one of the main factors leading to tumor progression. Like other malignancies, bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance. Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate gene expression at the posttranscriptional level, which results in the inhibition of translation or the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the expression of genes related to tumor resistance, thereby promoting the progression of tumors. In bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer. Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer and improving the efficacy of chemotherapy and patient survival. In this article, we review the role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fa Zhang
- Department of Urology, First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Weijie Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, People's Republic of China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
AEG-1/miR-221 Axis Cooperatively Regulates the Progression of Hepatocellular Carcinoma by Targeting PTEN/PI3K/AKT Signaling Pathway. Int J Mol Sci 2019; 20:ijms20225526. [PMID: 31698701 PMCID: PMC6888527 DOI: 10.3390/ijms20225526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading malignancy worldwide, causing mortality in children and adults. AEG-1 is functioned as a scaffold protein for the proper assembly of RNA-induced silencing complex (RISC) to optimize or increase its activity. The increased activity of oncogenic miRNAs leads to the degradation of target tumor suppressor genes. miR-221 is an oncogenic miRNA, that plays a seminal role in carcinogenesis regulation of HCC. However, the molecular mechanism and biological functions of the miR-221/AEG-1 axis have not been investigated extensively in HCC. Here, the expression of miR-221/AEG-1 and their target/associate genes was analyzed by qRT-PCR and Western blot. The role of the miR-221/AEG-1 axis in HCC was evaluated by proliferation assay, migration assay, invasion assay, and flow cytometry analysis. The expression level of miR-221 decreased in AEG-1 siRNA transfected HCC cells. On the other hand, there were no significant expression changes of AEG-1 in miR-221 mimic and miR-221 inhibitor transfected HCC cells and inhibition of miR-221/AEG-1 axis decreased cell proliferation, invasion, migration, and angiogenesis and induced apoptosis, cell cycle arrest by upregulating p57, p53, PTEN, and RB and downregulating LSF, MMP9, OPN, Bcl-2, PI3K, AKT, and LC3A in HCC cells. Furthermore, these findings suggest that the miR-221/AEG-1 axis plays a seminal oncogenic role by modulating PTEN/PI3K/AKT signaling pathway in HCC. In conclusion, the miR-221/AEG-1 axis may serve as a potential target for therapeutics, diagnostics, and prognostics of HCC.
Collapse
|
9
|
Liu X, Xu X, Deng W, Huang M, Wu Y, Zhou Z, Zhu K, Wang Y, Cheng X, Zhou X, Chen L, Li Y, Wang G, Fu B. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol Med Rep 2018; 19:1678-1686. [PMID: 30592282 PMCID: PMC6390063 DOI: 10.3892/mmr.2018.9791] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Increased expression of CCL18 has been observed in various malignancies and in the urine samples of patients with bladder cancer (BC). However, the roles of CCL18 in the development, progression and metastasis of BC remain unclear. The present study demonstrated that CCL18 expression was significantly associated with advanced clinical stages of BC. Furthermore, exogenous CCL18 promoted cell invasion and migration, and induced cell epithelial-mesenchymal transition (EMT) in BC cells. Western blotting demonstrated that E-cadherin, an epithelial marker, was decreased, whereas matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF)-C were increased in CCL18-treated cells. Blocking CCR8 via a small molecule inhibitor or short hairpin (sh)RNA mitigated the decrease in E-cadherin, and increase in MMP-2 and VEGF-C, caused by human recombinant (r)CCL18. CCR8 knockdown by shRNA reversed rCCL18-induced cancer cell invasion, migration and EMT. In conclusion, these data suggested that CCL18 may promote migration, invasion and EMT by binding CCR8 in BC cells. Inhibition of CCL18 activity by blocking CCR8 could be a potential therapeutic strategy for preventing the progression of BC.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyun Xu
- Department of Urology, The Third Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingchuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanlong Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinfu Cheng
- Department of Urology, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333000, P.R. China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, Yan RM, Liang L, Zhong M, Yu YH, Wu S, Wang W. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2018; 38:1256-1268. [PMID: 30254211 PMCID: PMC6363643 DOI: 10.1038/s41388-018-0511-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/03/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Cancer-secreted exosomal miRNAs are emerging mediators of cancer-stromal cross-talk in the tumor environment. Our previous miRNAs array of cervical squamous cell carcinoma (CSCC) clinical specimens identified upregulation of miR-221-3p. Here, we show that miR-221-3p is closely correlated with peritumoral lymphangiogenesis and lymph node (LN) metastasis in CSCC. More importantly, miR-221-3p is characteristically enriched in and transferred by CSCC-secreted exosomes into human lymphatic endothelial cells (HLECs) to promote HLECs migration and tube formation in vitro, and facilitate lymphangiogenesis and LN metastasis in vivo according to both gain-of-function and loss-of-function experiments. Furthermore, we identify vasohibin-1 (VASH1) as a novel direct target of miR-221-3p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of VASH1 could respectively rescue and simulate the effects induced by exosomal miR-221-3p. Importantly, the miR-221-3p-VASH1 axis activates the ERK/AKT pathway in HLECs independent of VEGF-C. Finally, circulating exosomal miR-221-3p levels also have biological function in promoting HLECs sprouting in vitro and are closely associated with tumor miR-221-3p expression, lymphatic VASH1 expression, lymphangiogenesis, and LN metastasis in CSCC patients. In conclusion, CSCC-secreted exosomal miR-221-3p transfers into HLECs to promote lymphangiogenesis and lymphatic metastasis via downregulation of VASH1 and may represent a novel diagnostic biomarker and therapeutic target for metastatic CSCC patients in early stages.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Chen J, Chen Y, Gu L, Li X, Gao Y, Lyu X, Chen L, Luo G, Wang L, Xie Y, Duan J, Peng C, Ma X. LncRNAs act as prognostic and diagnostic biomarkers in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 2018; 7:74325-74336. [PMID: 27527868 PMCID: PMC5342056 DOI: 10.18632/oncotarget.11101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
We conducted a systematic review and meta-analysis to investigate the clinical values, including clinicopathology, prognosis, and diagnosis of different long non-coding RNAs (lncRNAs) in renal cell carcinoma (RCC). A total of 14 eligible studies, including 10 on clinicopathological features, 11 on prognosis, and 3 on diagnosis were identified. Results revealed that metastasis-associated lung adenocarcinoma transcript 1(MALAT1) expression was associated with tumor stage (odds ratio [OR], 3.46; 95% confidence interval [CI], 1.63-7.36; p=0.001). The high expression of MALAT1 could be considered a biomarker of the early detection of lymph node metastasis and predictor of poor survival in RCC patients, who likely manifested short overall survival (OS; hazard ratio [HR], 2.97; 95% CI, 1.68-5.28; p<0.001). For diagnostic value, the pooled result showed that lncRNA maintained a sensitivity of 0.89 and specificity of 0.91 in RCC diagnosis, The area under the curve of 0.94 (95% CI, 0.92-0.96) for lncRNA in RCC diagnosis also indicated a significant advantage over other biomarkers. Our systematic review and meta-analysis demonstrated that lncRNAs could be considered biomarkers to detect lymph node metastasis and distant metastasis in early stages. LncRNAs could function as potential prognostic markers in RCC. LncRNAs could also display high accuracy for RCC diagnosis.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yalei Chen
- Department of Cardiology, Beijing Anzhen Hospital affiliated to Capital Medical University, Beijing, China
| | - Liangyou Gu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xintao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiangjun Lyu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Luyao Chen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guoxiong Luo
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lei Wang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yongpeng Xie
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junyao Duan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Cheng Peng
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
12
|
Tsikrika FD, Avgeris M, Levis PK, Tokas T, Stravodimos K, Scorilas A. miR-221/222 cluster expression improves clinical stratification of non-muscle invasive bladder cancer (TaT1) patients' risk for short-term relapse and progression. Genes Chromosomes Cancer 2017; 57:150-161. [PMID: 29181884 DOI: 10.1002/gcc.22516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/12/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
Clinical heterogeneity of bladder cancer prognosis requires the identification of bladder tumors' molecular profile to improve the prediction value of the established and clinically used markers. In this study, we have analyzed miR-221/222 cluster expression in bladder tumors and its clinical significance for patients' prognosis and disease outcome. The study included 387 tissue specimens. Following extraction, total RNA was polyadenylated at 3'-end and reversed transcribed. SYBR-Green based qPCR assays were performed for the quantification of miR-221/222 expression. Extensive statistical analysis was completed for the evaluation of miR-221/222 cluster's clinical significance. The expression of miR-221/222 is significantly downregulated in tumors compared to normal urothelium, while ROC curve and logistic regression analysis highlighted cluster's discriminatory ability. However, miR-222 levels were increased in muscle-invasive (T2-T4) compared to superficial tumors (TaT1), and in high compared to low-grade tumors. Kaplan-Meier survival curves and Cox regression analysis revealed the stronger risk of TaT1 patients overexpressing miR-222 for disease short-term relapse and progression following treatment. Moreover, multivariate Cox models highlighted the independent prognostic value of miR-222 overexpression for TaT1 patients' poor prognosis. Finally, the analysis of miR-222 expression improved significantly the positive prediction strength of the clinically used prognostic markers of tumor stage, grade, EORTC risk-stratification and recurrence at the first follow-up cystoscopy for TaT1 patients' outcome, and resulted to higher clinical net benefit following decision curve analysis. In conclusion, the expression of miR-221/222 cluster is deregulated in bladder tumors and miR-222 overexpression results to a superior positive prediction of TaT1 patients' short-term relapse and progression.
Collapse
Affiliation(s)
- Foteini D Tsikrika
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 01, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 01, Greece
| | - Panagiotis K Levis
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 17, Athens, 115 27, Greece
| | - Theodoros Tokas
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 17, Athens, 115 27, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 17, Athens, 115 27, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 01, Greece
| |
Collapse
|
13
|
Zheng B, Jeong S, Zhu Y, Chen L, Xia Q. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA). Oncotarget 2017; 8:100819-100830. [PMID: 29246025 PMCID: PMC5725067 DOI: 10.18632/oncotarget.19044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
The microRNAs are a group of 20 nucleotides-long non-coding RNAs. By binding to the 3'UTR region of target mRNA, microRNAs can perform extensive actions mediating gene expression at post-trancriptional stages. It makes microRNAs serve as very crucial regulators in various biological progress including carcinogenesis. Long non-coding RNAs, however, are a subgroup of RNA with the length of 200 nucleotides. Unlike microRNAs, long non-coding RNAs can form secondary of tertiary domain based on their length. With the ability of directly interacting with DNA, RNA, protein, long non-coding RNAs have promoting or inhibitive functions in gene expression regulation. Furthermore, the abnormal expression of certain long non-coding RNAs has roused people's interest in the role of long non-coding RNAs in tumorigenesis. Although the connection between microRNA/long non-coding RNA and CCA has been a hot field to researchers, the link between molecular mechanism and clinical outcome has been barely built. This review takes a retrospect at the latest researches on the link between microRNA/long non-coding RNA and cholangiocarcinoma and the potential of microRNA/long non-coding RNA serving as distinctive biomarkers for CCA in clinical practice.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yanjing Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
14
|
Correa-Gallego C, Maddalo D, Doussot A, Kemeny N, Kingham TP, Allen PJ, D’Angelica MI, DeMatteo RP, Betel D, Klimstra D, Jarnagin WR, Ventura A. Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma. PLoS One 2016; 11:e0163699. [PMID: 27685844 PMCID: PMC5042503 DOI: 10.1371/journal.pone.0163699] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are potential biomarkers in various malignancies. We aim to characterize miRNA expression in intrahepatic cholangiocarcinoma (ICC) and identify circulating plasma miRNAs with potential diagnostic and prognostic utility. Methods Using deep-sequencing techniques, miRNA expression between tumor samples and non-neoplastic liver parenchyma were compared. Overexpressed miRNAs were measured in plasma from an independent cohort of patients with cholangiocarcinoma using RT-qPCR and compared with that healthy volunteers. The discriminatory ability of the evaluated plasma miRNAs between patients and controls was evaluated with receiving operating characteristic (ROC) curves. Results Small RNAs from 12 ICC and 11 tumor-free liver samples were evaluated. Unsupervised hierarchical clustering using the miRNA expression data showed clear grouping of ICC vs. non-neoplastic liver parenchyma. We identified 134 down-regulated and 128 upregulated miRNAs. Based on overexpression and high fold-change, miR21, miR200b, miR221, and miR34c were measured in plasma from an independent cohort of patients with ICC (n = 25) and healthy controls (n = 7). Significant overexpression of miR-21 and miR-221 was found in plasma from ICC patients. Furthermore, circulating miR-21 demonstrated a high discriminatory ability between patients with ICC and healthy controls (AUC: 0.94). Conclusion Among the differentially expressed miRNAs in ICC, miR-21 and miR-221 are overexpressed and detectable in the circulation. Plasma expression levels of these miRNAs, particularly miR-21, accurately differentiates patients with ICC from healthy controls and could potentially serve as adjuncts in diagnosis. Prospective validation and comparison with other hepatobiliary malignancies is required to establish their potential role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Camilo Correa-Gallego
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Danilo Maddalo
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, New York, NY, United States of America
| | - Alexandre Doussot
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Nancy Kemeny
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - T. Peter Kingham
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Peter J. Allen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Michael I. D’Angelica
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, United States of America
| | - David Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - William R. Jarnagin
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, New York, NY, United States of America
| |
Collapse
|
15
|
Wu WB, Wang W, Du YH, Li H, Xia SJ, Liu HT. MicroRNA-3713 regulates bladder cell invasion via MMP9. Sci Rep 2016; 6:32374. [PMID: 27577949 PMCID: PMC5006037 DOI: 10.1038/srep32374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/03/2016] [Indexed: 11/09/2022] Open
Abstract
Transitional cell carcinoma (TCC) is the most common type of bladder cancer but its carcinogenesis remains not completely elucidated. Dysregulation of microRNAs (miRNAs) is well known to be involved in the development of various cancers, including TCC, whereas a role of miR-3713 in the pathogenesis of TCC has not been appreciated. Here, we reported that significantly higher levels of matrix metallopeptidase 9 (MMP9), and significantly lower levels of miR-3713 were detected in TCC tissue, compared to the adjacent non-tumor tissue, and were inversely correlated. Moreover, the low miR-3713 levels in TCC specimens were associated with poor survival of the patients. In vitro, overexpression of miR-3713 significantly decreased cell invasion, and depletion of miR-3713 increased cell invasion in TCC cells. The effects of miR-3713 on TCC cell growth appeared to result from its modification of MMP9 levels, in which miR-3713 was found to bind to the 3'-UTR of MMP9 mRNA to inhibit its protein translation in TCC cells. This study highlights miR-3713 as a previously unrecognized factor that controls TCC invasiveness, which may be important for developing innovative therapeutic targets for TCC treatment.
Collapse
Affiliation(s)
- Wen-Bo Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi-Heng Du
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Tao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Department of Urology, Kashgar Prefecture Second People's Hospital, Kashgar 844000, China
| |
Collapse
|
16
|
Wu CW, Peng ML, Yeh KT, Tsai YY, Chiang CC, Cheng YW. Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing. Exp Eye Res 2016; 146:206-211. [DOI: 10.1016/j.exer.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/07/2023]
|
17
|
Di Martino MT, Rossi M, Caracciolo D, Gullà A, Tagliaferri P, Tassone P. Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin Ther Targets 2016; 20:1099-108. [PMID: 26959615 DOI: 10.1517/14728222.2016.1164693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are key non-coding RNA post-transcriptional regulators of messenger RNAs (mRNAs), and are deeply dysregulated in human cancer. A rising body of evidence indicates that miRNAs represent valuable therapeutic targets. In this light, the cluster miR-221/222 are of particular relevance, given that they are strongly upregulated in a variety of solid and hematologic malignancies. AREA COVERED This review summarizes recent findings on the roles played by miR-221/222 in human cancer and their potential clinical value as promising targets for therapeutic studies. EXPERT OPINION The rising body of advanced preclinical evidence on the biological significance of miR-221/222 in a variety of malignancies indicates that they will play a crucial role in the future of innovative therapeutic strategies, both as validated biomarkers and targets.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy
| | - Marco Rossi
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy
| | - Daniele Caracciolo
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy
| | - Annamaria Gullà
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy
| | - Pierosandro Tagliaferri
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy
| | - Pierfrancesco Tassone
- a Department of Experimental and Clinical Medicine , Magna Graecia University, Salvatore Venuta University Campus , Catanzaro , Italy.,b Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
18
|
Li J, Yao L, Li G, Ma D, Sun C, Gao S, Zhang P, Gao F. miR-221 Promotes Epithelial-Mesenchymal Transition through Targeting PTEN and Forms a Positive Feedback Loop with β-catenin/c-Jun Signaling Pathway in Extra-Hepatic Cholangiocarcinoma. PLoS One 2015; 10:e0141168. [PMID: 26501139 PMCID: PMC4621024 DOI: 10.1371/journal.pone.0141168] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Extrahepatic cholangiocarcinoma (EHCC) is a refractory malignancy with poor prognosis due to its early invasion, metastasis and recurrence after operation. Therefore, understanding the mechanisms of invasion and metastasis is the key to the development of new and effective therapeutic strategies for EHCC. In the present study we demonstrated that miR-221 promoted EHCC invasion and metastasis through targeting PTEN and formed a positive feedback loop with β-catenin/c-Jun signaling pathway. We found miR-221 was upregulated in EHCC specimens and CC cell lines. Moreover, miR-221 was found strongly associated with the metastasis and prognosis of EHCC patients. The expression of PTEN was downregulated in EHCC patients and CC cell lines, and was further demonstrated as one of the downstream targets of miR-221. In addition, our data indicated that β-catenin activated miR-221 through c-jun, while miR-221 enhanced β-catenin signaling induced-epithelial-mesenchymal transition (EMT) by targeting PTEN, hence forming a positive feedback loop in EHCC cell lines. In conclusion, our results suggested that miR-221 promotes EMT through targeting PTEN and forms a positive feedback loop with β-catenin/c-Jun signaling pathway in EHCC.
Collapse
Affiliation(s)
- Jianguo Li
- Department of General Surgery, the First Affiliated Hospital of JILIN University, Changchun, 130021, P.R. China
| | - Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Guodong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Donglai Ma
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Chen Sun
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Shuang Gao
- Heilongjiang Nursing College, Harbin, 150086, P.R. China
| | - Ping Zhang
- Department of General Surgery, the First Affiliated Hospital of JILIN University, Changchun, 130021, P.R. China
- * E-mail: (PZ); (FG)
| | - Feng Gao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
- * E-mail: (PZ); (FG)
| |
Collapse
|
19
|
Yang Z, Zhang Y, Zhang X, Zhang M, Liu H, Zhang S, Qi B, Sun X. Serum microRNA-221 functions as a potential diagnostic and prognostic marker for patients with osteosarcoma. Biomed Pharmacother 2015; 75:153-8. [DOI: 10.1016/j.biopha.2015.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/26/2015] [Indexed: 02/06/2023] Open
|