1
|
Wang Q, Zhao H, Ding H, Zhang H, Zhang J, Li L, Han B, Kai G. Cell-free supernatant of Clostridium leptum inhibits breast cancer cell proliferation. Lett Appl Microbiol 2025; 78:ovaf037. [PMID: 40074544 DOI: 10.1093/lambio/ovaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of Clostridium leptum (ClCFS) on breast cancer cells by methyl thiazolyl tetrazolium (MTT) assay. Untargeted metabolomics analysis was employed to characterize metabolite alterations in ClCFS. Furthermore, the core targets were predicted by the protein-protein interaction network and the signaling pathways were enriched by the Kyoto Encyclopedia of Genes and Genomes analysis. Our findings demonstrated that ClCFS inhibited the proliferation of breast cancer cells and that the main metabolite of ClCFS might be acetylcarnitine. Utilizing network pharmacological analysis, we identified apoptosis-related signaling pathways as the principal mechanisms underlying ClCFS activity. Furthermore, five core targets of STAT3, IL-1β, BCL2, CASP3, and ESR1 were identified. This study elucidates the main bioactive constituent and the potential targets of ClCFS against breast cancer. It provides a new understanding of the pharmacological activity of ClCFS in breast cancer treatment.
Collapse
Affiliation(s)
- Qingling Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huan Zhao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huizhe Ding
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hao Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jizhou Zhang
- Oncology Department, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou 325000, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313002, China
| | - Bing Han
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
3
|
Esplin ED, Hanson C, Wu S, Horning AM, Barapour N, Nevins SA, Jiang L, Contrepois K, Lee H, Guha TK, Hu Z, Laquindanum R, Mills MA, Chaib H, Chiu R, Jian R, Chan J, Ellenberger M, Becker WR, Bahmani B, Khan A, Michael B, Weimer AK, Esplin DG, Shen J, Lancaster S, Monte E, Karathanos TV, Ladabaum U, Longacre TA, Kundaje A, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Multiomic analysis of familial adenomatous polyposis reveals molecular pathways associated with early tumorigenesis. NATURE CANCER 2024; 5:1737-1753. [PMID: 39478120 PMCID: PMC11584401 DOI: 10.1038/s43018-024-00831-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/29/2024] [Indexed: 11/24/2024]
Abstract
Familial adenomatous polyposis (FAP) is a genetic disease causing hundreds of premalignant polyps in affected persons and is an ideal model to study transitions of early precancer states to colorectal cancer (CRC). We performed deep multiomic profiling of 93 samples, including normal mucosa, benign polyps and dysplastic polyps, from six persons with FAP. Transcriptomic, proteomic, metabolomic and lipidomic analyses revealed a dynamic choreography of thousands of molecular and cellular events that occur during precancerous transitions toward cancer formation. These involve processes such as cell proliferation, immune response, metabolic alterations (including amino acids and lipids), hormones and extracellular matrix proteins. Interestingly, activation of the arachidonic acid pathway was found to occur early in hyperplasia; this pathway is targeted by aspirin and other nonsteroidal anti-inflammatory drugs, a preventative treatment under investigation in persons with FAP. Overall, our results reveal key genomic, cellular and molecular events during the earliest steps in CRC formation and potential mechanisms of pharmaceutical prophylaxis.
Collapse
Affiliation(s)
- Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Casey Hanson
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron M Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Nasim Barapour
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Lihua Jiang
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Hayan Lee
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Zheng Hu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Joanne Chan
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Winston R Becker
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Bahareh Bahmani
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Basil Michael
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Annika K Weimer
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
5
|
Albogami S. The Potential Inhibitory Role of Acetyl-L-Carnitine on Proliferation, Migration, and Gene Expression in HepG2 and HT29 Human Adenocarcinoma Cell Lines. Curr Issues Mol Biol 2023; 45:2393-2408. [PMID: 36975525 PMCID: PMC10046977 DOI: 10.3390/cimb45030155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Malignancies of the liver and colon are the most prevalent forms of digestive system cancer globally. Chemotherapy, one of the most significant treatments, has severe side effects. Chemoprevention using natural or synthetic medications can potentially reduce cancer severity. Acetyl-L-carnitine (ALC) is an acetylated derivative of carnitine essential for intermediate metabolism in most tissues. This study aimed to investigate the effects of ALC on the proliferation, migration, and gene expression of human liver (HepG2) and colorectal (HT29) adenocarcinoma cell lines. The cell viability and half maximal inhibitory concentration of both cancer cell lines were determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Wound healing after treatment was assessed using a migration assay. Morphological changes were imaged using brightfield and fluorescence microscopy. Post treatment, apoptotic DNA was detected using a DNA fragmentation assay. The relative mRNA expressions of matrix metallopeptidase 9 (MMP9) and vascular endothelial growth factor (VEGF) were evaluated using RT-PCR. The results showed that ALC treatment affects the wound-healing ability of HepG2 and HT29 cell lines. Changes in nuclear morphology were detected under fluorescent microscopy. ALC also downregulates the expression levels of MMP9 and VEGF in HepG2 and HT29 cell lines. Our results indicate that the anticancer action of ALC is likely mediated by a decrease in adhesion, migration, and invasion.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
6
|
Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol 2022; 12:1023806. [PMID: 36389140 PMCID: PMC9643746 DOI: 10.3389/fcimb.2022.1023806] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/05/2022] [Indexed: 07/21/2023] Open
Abstract
Accumulating evidence suggests that selected microbiota-derived metabolites play a significant role in both tumor prevention and supportive treatment of cancer. Short-chain fatty acids (SCFAs), i.e., mainly acetate, proprionate, and butyrate, are one of them. Nowadays, it is known that butyrate is a key microbial metabolite. Therefore, in the current review, we focused on butyrate and sodium butyrate (NaB) in the context of colorectal cancer. Notably, butyrate is characterized by a wide range of beneficial properties/activities. Among others, it influences the function of the immune system, maintains intestinal barrier integrity, positively affects the efficiency of anti-cancer treatment, and may reduce the risk of mucositis induced by chemotherapy. Taking into consideration these facts, we analyzed NaB (which is a salt of butyric acid) and its impact on gut microbiota as well as anti-tumor activity by describing molecular mechanisms. Overall, NaB is available as, for instance, food with special medical purposes (depending on the country's regulation), and its administration seems to be a promising option for colorectal cancer patients.
Collapse
Affiliation(s)
| | - Luigi Marano
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Elvira Merola
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23073867. [PMID: 35409231 PMCID: PMC8998886 DOI: 10.3390/ijms23073867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The Metabolome and Transcriptome are mutually communicating within cancer cells, and this interplay is translated into the existence of quantifiable correlation structures between gene expression and metabolite abundance levels. Studying these correlations could provide a novel venue of understanding cancer and the discovery of novel biomarkers and pharmacological strategies, as well as laying the foundation for the prediction of metabolite quantities by leveraging information from the more widespread transcriptomics data. In the current paper, we investigate the correlation between gene expression and metabolite levels in the Cancer Cell Line Encyclopedia dataset, building a direct correlation network between the two molecular ensembles. We show that a metabolite/transcript correlation network can be used to predict metabolite levels in different samples and datasets, such as the NCI-60 cancer cell line dataset, both on a sample-by-sample basis and in differential contrasts. We also show that metabolite levels can be predicted in principle on any sample and dataset for which transcriptomics data are available, such as the Cancer Genome Atlas (TCGA).
Collapse
|
8
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
9
|
Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
McNabney SM, Henagan TM. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017; 9:E1348. [PMID: 29231905 PMCID: PMC5748798 DOI: 10.3390/nu9121348] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.
Collapse
Affiliation(s)
- Sean M McNabney
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Tara M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Partolina M, Thoms HC, MacLeod KG, Rodriguez-Blanco G, Clarke MN, Venkatasubramani AV, Beesoo R, Larionov V, Neergheen-Bhujun VS, Serrels B, Kimura H, Carragher NO, Kagansky A. Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array. Cell Death Discov 2017; 3:16077. [PMID: 28326191 PMCID: PMC5349387 DOI: 10.1038/cddiscovery.2016.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required, for at least two pressing reasons: firstly, many approved drugs are known to influence histone modifications and new cancer therapies are increasingly being developed towards targeting histone deacetylases (HDACs) and other epigenetic readers and writers. Therefore, robust assays for fingerprinting the global effects of such drugs on preclinical cell, organoid and in vivo models is required; and secondly, robust histone-fingerprinting assays applicable to patient samples may afford the development of next-generation diagnostic and prognostic tools. In our study, we have used a panel of monoclonal antibodies to determine the relative changes in the global abundance of post-translational modifications on histones purified from cancer cell lines treated with HDAC inhibitors using a novel technique, called epigenetic reverse phase protein array. We observed a robust increase in acetylation levels within 2–24 h after inhibition of HDACs in different cancer cell lines. Moreover, when these cells were treated with N-acetylated amino acids in addition to HDACs, we detected a further increase in histone acetylation, demonstrating that these molecules could be utilized as donors of the acetyl moiety for protein acetylation. Consequently, this study not only offers a novel assay for diagnostics and drug screening but also warrants further research of the novel class of inexpensive, non-toxic natural compounds that could potentiate the effects of HDAC inhibitors and is therefore of interest for cancer therapeutics.
Collapse
Affiliation(s)
- Marina Partolina
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hazel C Thoms
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Kenneth G MacLeod
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Giovanny Rodriguez-Blanco
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Matthew N Clarke
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Anuroop V Venkatasubramani
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Rima Beesoo
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute , Bethesda, MD 20892, USA
| | - Vidushi S Neergheen-Bhujun
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Bryan Serrels
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology . 4259, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Neil O Carragher
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Alexander Kagansky
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
12
|
Pereira JFS, Awatade NT, Loureiro CA, Matos P, Amaral MD, Jordan P. The third dimension: new developments in cell culture models for colorectal research. Cell Mol Life Sci 2016; 73:3971-89. [PMID: 27147463 PMCID: PMC11108567 DOI: 10.1007/s00018-016-2258-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022]
Abstract
Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.
Collapse
Affiliation(s)
- Joana F S Pereira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nikhil T Awatade
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cláudia A Loureiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|