1
|
Xia Y, Wang D, Zhao H, Meng T, Jiang Q, Pan Z, Wang G, An T, Li B, Bi S, Wang H, Lu J, Liu H, Lin H, Lin C, Zheng Q, Li D. Silencing of tropomodulin 1 inhibits acute myeloid leukemia cell proliferation and tumor growth by elevating karyopherin alpha 2-mediated autophagy. Pharmacol Res 2024; 207:107327. [PMID: 39079577 DOI: 10.1016/j.phrs.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Yuan Xia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Dan Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tingyi Meng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qingling Jiang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Zhaohai Pan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huikai Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongfu Liu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Haiyan Lin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264003, PR China.
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Tong K, Zhang C, Yang T, Guo R, Wang X, Guan R, Jin T. Suggestive evidence of the genetic association of TMOD1 and PTCSC2 polymorphisms with thyroid carcinoma in the Chinese Han population. BMC Endocr Disord 2022; 22:263. [PMID: 36316666 PMCID: PMC9620653 DOI: 10.1186/s12902-022-01177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to survey the associations of six single nucleotide polymorphisms (SNPs) in the TMOD1 and PTCSC2 genes with thyroid carcinoma (TC). METHOD Peripheral blood samples were obtained from 510 patients with TC and 509 normal controls. Six SNPs were genotyped by the Agena MassARRAY platform. Logistic regression was used to evaluate the association between SNPs and TC susceptibility by calculating odds ratios (ORs) and 95% confidence intervals (CIs). SNP-SNP interactions were analyzed by multifactor dimensionality reduction (MDR). RESULTS Our study showed that rs925489 (OR = 1.45, p = 0.011) and rs965513 (OR = 1.40, p = 0.021) were significantly associated with an increased risk of TC. Rs10982622 decreased TC risk (OR = 0.74, p = 0.025). Further stratification analysis showed that rs10982622 reduced the susceptibility to TC in patients aged ≤ 45 years (OR = 0.69, p = 0.019) and in females (OR = 0.61, p = 0.014). Rs925489 increased TC risk in people aged > 45 years (OR = 1.54, p = 0.044) and in males (OR = 2.34, p = 0.003). In addition, rs965513 was related to an increased risk of TC in males (OR = 2.14, p = 0.007). Additionally, haplotypes in the block (rs925489|rs965513) significantly increased TC risk (p < 0.05). The best predictive model for TC was the combination of rs1052270, rs10982622, rs1475545, rs16924016, and rs925489. CONCLUSION TMOD1 and PTCSC2 polymorphisms were separately correlated with a remarkable decrease and increase in TC risk based on the analysis.
Collapse
Affiliation(s)
- Kaijun Tong
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Chang Zhang
- Department of Clinical Laboratory, People's Hospital of Wanning, Hainan Province, Wanning, China
| | - Tingting Yang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Rongbiao Guo
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Xinyuan Wang
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China
| | - Renyang Guan
- Department of Medical Images, People's Hospital of Wanning, Huanshi three eastern Road, Wancheng Town, Wanning City, Hainan Province, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 710069, Xi'an, Shaanxi, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, 229 North Taibai Road, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Feng L, Zhang Y, Yang Q, Guo L, Yang F. MicroRNA-885 regulates the growth and epithelial mesenchymal transition of human liver cancer cells by suppressing tropomodulin 1 expression. Arch Biochem Biophys 2020; 693:108588. [PMID: 32937160 DOI: 10.1016/j.abb.2020.108588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 01/10/2023]
Abstract
MicroRNA-885 (miR-885) has been shown to act as vital regulator of tumorigenesis and its tumor-suppressive role has been investigated in several human cancers. However, the role of miR-885 in regulation of epithelial mesenchymal transition of liver cancer cells yet unknown. This study was undertaken to investigate the tumor-suppressive role of miR-885 and investigate its effects on epithelial mesenchymal transition of human liver cancer cells. The results revealed that miR-885 to be significantly (P < 0.05) repressed in liver cancer and tissues and cell lines. Overexpression of miR-885 resulted in significant (P < 0.05) decline in the proliferation of liver cancer cells. Additionally, migration and invasion of the liver cancer cells was also suppressed upon miR-182 overexpression which was associated with alteration of the proteins associated with epithelial mesenchymal transition. TMOD1 was identified as the target of miR-885 and the regulatory role of miR-885 was elucidated to be exerted via post-transcriptional silencing of TMOD1. The silencing of TMOD1 by miR-885 inhibited the expression of mesenchymal markers but enhanced the expression levels of epithelial markers. The results of present study revealed miR-885 proved the tumor-suppressive role of miR-885 in liver cancer and points towards its therapeutic implications in liver cancer management.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medical, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Yueyi Zhang
- Department of Nuclear Medical, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Qing Yang
- Department of Nuclear Medical, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China.
| | - Li Guo
- Department of Radiology Department Medical, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Feifei Yang
- Department of Radiology Department Medical, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| |
Collapse
|
5
|
Lipsey CC, Harbuzariu A, Robey RW, Huff LM, Gottesman MM, Gonzalez-Perez RR. Leptin Signaling Affects Survival and Chemoresistance of Estrogen Receptor Negative Breast Cancer. Int J Mol Sci 2020; 21:E3794. [PMID: 32471192 PMCID: PMC7311967 DOI: 10.3390/ijms21113794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen-receptor-negative breast cancer (BCER-) is mainly treated with chemotherapeutics. Leptin signaling can influence BCER- progression, but its effects on patient survival and chemoresistance are not well understood. We hypothesize that leptin signaling decreases the survival of BCER- patients by, in part, inducing the expression of chemoresistance-related genes. The correlation of expression of leptin receptor (OBR), leptin-targeted genes (CDK8, NANOG, and RBP-Jk), and breast cancer (BC) patient survival was determined from The Cancer Genome Atlas (TCGA) mRNA data. Leptin-induced expression of proliferation and chemoresistance-related molecules was investigated in triple-negative BC (TNBC) cells that respond differently to chemotherapeutics. Leptin-induced gene expression in TNBC was analyzed by RNA-Seq. The specificity of leptin effects was assessed using OBR inhibitors (shRNA and peptides). The results show that OBR and leptin-targeted gene expression are associated with lower survival of BCER- patients. Importantly, the co-expression of these genes was also associated with chemotherapy failure. Leptin signaling increased the expression of tumorigenesis and chemoresistance-related genes (ABCB1, WNT4, ADHFE1, TBC1D3, LL22NC03, RDH5, and ITGB3) and impaired chemotherapeutic effects in TNBC cells. OBR inhibition re-sensitized TNBC to chemotherapeutics. In conclusion, the co-expression of OBR and leptin-targeted genes may be used as a predictor of survival and drug resistance of BCER- patients. Targeting OBR signaling could improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Crystal C. Lipsey
- Microbiology, Biochemistry, and Immunology, GEBS, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.C.L.); (A.H.)
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA; (R.W.R.); (L.M.H.); (M.M.G.)
| | - Adriana Harbuzariu
- Microbiology, Biochemistry, and Immunology, GEBS, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.C.L.); (A.H.)
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA; (R.W.R.); (L.M.H.); (M.M.G.)
| | - Lyn M. Huff
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA; (R.W.R.); (L.M.H.); (M.M.G.)
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA; (R.W.R.); (L.M.H.); (M.M.G.)
| | - Ruben R. Gonzalez-Perez
- Microbiology, Biochemistry, and Immunology, GEBS, Morehouse School of Medicine, Atlanta, GA 30310, USA; (C.C.L.); (A.H.)
| |
Collapse
|
6
|
Lu F, Cui D, Mu B, Zhao L, Mu P. Downregulation of TMOD1 promotes cell motility and cell proliferation in cervical cancer cells. Oncol Lett 2020; 19:3339-3348. [PMID: 32218869 DOI: 10.3892/ol.2020.11410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Tropomodulin-1 (TMOD1) is a key regulator of actin dynamics, which caps the pointed end of actin filaments. TMOD1 has been reported to be involved in several cellular processes, including neurite outgrowth, spine formation and cell migration. Increasing evidence demonstrates that TMOD1 is implicated in several aspects of cancer development. The present study aimed to investigate the role of TMOD1 in cervical cancer. HeLa and CaSki cell lines, derived from human cervical cancer, were used to evaluate the function of TMOD1. Cell motility was measured via a wound-healing assay, with the TMOD1 short hairpin (sh)RNAs transfected cells. Subsequently, cell proliferation was assessed using low serum cell culture condition, while cell cycle distribution was analyzed via flow cytometry. The results demonstrated that downregulated TMOD1 promoted cell motility and proliferation, which is attributed to promotion of G1/S phase transition in HeLa and CaSki cells. Furthermore, it was indicated that co-expression of shRNA resistant TMOD1 rescued these phenomena. The clinical data demonstrated that high TMOD1 expression is associated with good pathological status in patients with cervical cancer. Overall, the results of the present study indicated that TMOD1 may act as a tumor suppressor in cervical cancer, whereby its downregulated expression was demonstrated to have direct effects on cell motility and cell proliferation. These results provide new evidence for the prognostic prediction of cervical cancer, which may serve as a promising therapeutic strategy for patients with cervical cancer.
Collapse
Affiliation(s)
- Fangjin Lu
- Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Dandan Cui
- Department of Maternity, Shenyang Women and Children's Health Hospital, Shenyang, Liaoning 110014, P.R. China
| | - Bin Mu
- Shanghai Zhaohui Pharmaceutical Co., Ltd., Shanghai 201900, P.R. China
| | - Lu Zhao
- Department of Biochemistry and Molecular Biology, Basic Medical School, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Ping Mu
- Department of Biochemistry and Molecular Biology, Basic Medical School, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China.,Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 4660065, Japan
| |
Collapse
|
7
|
Kumari R, Jiu Y, Carman PJ, Tojkander S, Kogan K, Varjosalo M, Gunning PW, Dominguez R, Lappalainen P. Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments. Curr Biol 2020; 30:767-778.e5. [PMID: 32037094 DOI: 10.1016/j.cub.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Yaming Jiu
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320, Yueyang Road, Xuhui District, 200031 Shanghai, China; University of Chinese Academy of Sciences, Yuquan Road No.19(A), Shijingshan District, 100049 Beijing, China
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöberginkatu 2, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Markku Varjosalo
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Peter W Gunning
- School of Medical Sciences, UNSW, Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Bldg, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
8
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
9
|
Guo T, Ma H, Zhou Y. Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma. PeerJ 2019; 7:e7313. [PMID: 31333911 PMCID: PMC6626531 DOI: 10.7717/peerj.7313] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the major subtype of lung cancer and the most lethal malignant disease worldwide. However, the molecular mechanisms underlying LUAD are not fully understood. Methods Four datasets (GSE118370, GSE85841, GSE43458 and GSE32863) were obtained from the gene expression omnibus (GEO). Identification of differentially expressed genes (DEGs) and functional enrichment analysis were performed using the limma and clusterProfiler packages, respectively. A protein–protein interaction (PPI) network was constructed via Search Tool for the Retrieval of Interacting Genes (STRING) database, and the module analysis was performed by Cytoscape. Then, overall survival analysis was performed using the Kaplan–Meier curve, and prognostic candidate biomarkers were further analyzed using the Oncomine database. Results Totally, 349 DEGs were identified, including 275 downregulated and 74 upregulated genes which were significantly enriched in the biological process of extracellular structure organization, leukocyte migration and response to peptide. The mainly enriched pathways were complement and coagulation cascades, malaria and prion diseases. By extracting key modules from the PPI network, 11 hub genes were screened out. Survival analysis showed that except VSIG4, other hub genes may be involved in the development of LUAD, in which MYH10, METTL7A, FCER1G and TMOD1 have not been reported previously to correlated with LUAD. Briefly, novel hub genes identified in this study will help to deepen our understanding of the molecular mechanisms of LUAD carcinogenesis and progression, and to discover candidate targets for early detection and treatment of LUAD.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Hongtao Ma
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
10
|
Saito T, Uzawa K, Terajima M, Shiiba M, Amelio A, Tanzawa H, Yamauchi M. Aberrant Collagen Cross-linking in Human Oral Squamous Cell Carcinoma. J Dent Res 2019; 98:517-525. [DOI: 10.1177/0022034519828710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor progression is a complex process involving extracellular matrix (ECM) remodeling and stiffening. However, the mechanisms that govern these processes and their roles in tumor progression are still poorly understood. In this study, we performed bioinformatics, immunohistochemical, and biochemical analyses to examine if collagen cross-linking is associated with tumor stage and regional lymph node metastasis (RLNM) in oral squamous cell carcinoma (OSCC). We found that the genes encoding key enzymes for cross-linking are frequently overexpressed in oral, head, and neck cancers. Specifically, the enzymes lysyl hydroxylase 2 (LH2) or lysyl oxidase (LOX) and LOX-like 2 (LOXL2) were significantly upregulated in late-stage tumors and associated with poor patient prognosis. The protein levels of these enzymes in the primary human OSCC were also significantly increased in late-stage tumors and markedly elevated in the RLNM-positive tumors. Notably, while overall LOX/LOXL2-catalyzed collagen cross-links were enriched in late-stage and RLNM-positive tumors, LH2-mediated stable cross-links were significantly increased. To our knowledge, this is the first study to investigate the association of collagen cross-linking and expression of key enzymes regulating this process with OSCC stage. The data indicate a critical role for collagen cross-linking in OSCC tumor progression and metastasis, which may provide insights into development of novel therapeutic strategies to prevent OSCC progression.
Collapse
Affiliation(s)
- T. Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - K. Uzawa
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M. Terajima
- Department of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A.L. Amelio
- Department of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H. Tanzawa
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M. Yamauchi
- Department of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Bettinsoli P, Ferrari-Toninelli G, Bonini SA, Guarienti M, Cangelosi D, Varesio L, Memo M. Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget 2018; 9:27092-27103. [PMID: 29930753 PMCID: PMC6007461 DOI: 10.18632/oncotarget.25491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 (TMOD1) and tropomodulin 2 (TMOD2) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.
Collapse
Affiliation(s)
- Paola Bettinsoli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michela Guarienti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
12
|
Zhao L, Li X, Niu P, Li L. The effect of shear on the cytoskeleton remodeling and physiological performance of myocardium cells through Tmod1. RSC Adv 2018; 8:33347-33353. [PMID: 35548140 PMCID: PMC9086437 DOI: 10.1039/c8ra05982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/09/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: mechanical stimulation alters cell metabolism, but little is known about the effects of mechanical strain on the cytoskeleton of myocardium cells. This study was to investigate the changes of F-actin, a cytoskeleton protein of myocardium cells, and to provide a theoretical basis for further investigation of the mechanism of myocardium-remodeling. Methods: we examined the effects of fluid shear stress on the Tmod1 expression and F-actin cytoskeleton remodeling. Then, after myocardial cells, silenced by si-Tmod1, were treated by fluid shear stress, the change of intracellular calcium ion concentration, ROS in myocardial cells, cytochrome C, and the amount of F-actin, LDH and T-SOD MDA were evaluated with laser light confocal microscopy, western blot, and ELISA, respectively. Results: fluid shear stress can induce F-actin cytoskeleton remodeling and upregulate Tmod1 expression. After myocardial cells were under the conditions of Tmod1 inhibition, shear stress can significantly reduce the increase of ROS levels and calcium content, decrease the release of cells cytochrome C and LDH, decrease the MDA content, and increase the level of T-SOD. Conclusion: in conclusion, shear treatment can remodel the cytoskeleton through Tmod1, and its mechanism may be related to scavenging oxidative stress products, ROS and MDA, the increase of intracellular antioxidant enzyme activity of SOD and improvement in mitochondrial dysfunction. F-actin cytoskeleton remodeling observed by laser scanning confocal microscopy was induced by shear stress in cardiac myocytes (A), and the F-actin content change was manifested in (B).![]()
Collapse
Affiliation(s)
- Liang Zhao
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Institute of Life Science and Health
- College of Life Sciences and Technology
| | - Xiafei Li
- Institute of Life Science and Health
- College of Life Sciences and Technology
- Xinxiang Medical University
- Xinxiang
- China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| | - Li Li
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| |
Collapse
|
13
|
Koide N, Kasamatsu A, Endo-Sakamoto Y, Ishida S, Shimizu T, Kimura Y, Miyamoto I, Yoshimura S, Shiiba M, Tanzawa H, Uzawa K. Evidence for Critical Role of Lymphocyte Cytosolic Protein 1 in Oral Cancer. Sci Rep 2017; 7:43379. [PMID: 28230172 PMCID: PMC5322526 DOI: 10.1038/srep43379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Lymphocyte cytosolic protein 1 (LCP1), a member of actin-binding protein of the plastin family, has been identified in several malignant tumors of non-hematopoietic sites, such as the colon, prostate, and breast. However, little is known about the roles of LCP1 in oral squamous cell carcinomas (OSCCs). This present study sought to clarify the clinical relevance of LCP1 in OSCCs and investigate possible clinical applications for treating OSCCs by regulating LCP1 expression. We found up-regulation of LCP1in OSCCs compared with normal counterparts using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting, and immunohistochemistry (P < 0.05). We used shRNA models for LCP1 (shLCP1) and enoxacin (ENX), a fluoroquinolone antibiotic drug, as a regulator of LCP1 expression. In addition to the LCP1 knockdown experiments in which shLCP1 cells showed several depressed functions, including cellular proliferation, invasiveness, and migratory activities, ENX-treated cells also had attenuated functions. Consistent with our hypothesis from our in vitro data, LCP1-positive OSCC samples were correlated closely with the primary tumoral size and regional lymph node metastasis. These results suggested that LCP1 is a useful biomarker for determining progression of OSCCs and that ENX might be a new therapeutic agent for treating OSCCs by controlling LCP1 expression.
Collapse
Affiliation(s)
- Nao Koide
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Sho Ishida
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Yasushi Kimura
- Department of Oral and maxillofacial Surgery Research Institute, National Defense Medical College, Saitama, Japan
| | - Isao Miyamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Japanese Red Cross Fukaya Hospital, Saitama, Japan
| | - Shusaku Yoshimura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|