1
|
Fan G, Li D, Liu J, Tao N, Meng C, Cui J, Cai J, Sun T. HNRNPD is a prognostic biomarker in non-small cell lung cancer and affects tumor growth and metastasis via the PI3K-AKT pathway. Biotechnol Genet Eng Rev 2024; 40:1571-1590. [PMID: 36971333 DOI: 10.1080/02648725.2023.2196155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein D (HNRNPD) can regulate expression of key proteins in various cancers. However, the prognostic predictive value and biology function of HNRNPD in non-small cell lung cancer (NSCLC) is unknown. First, we used the TCGA and GEO datasets to determine that HNRNPD predicts the prognosis of NSCLC patients. Following that, we knocked down HNRNPD in NSCLC cell lines in vitro and validated its biological function using CCK-8, transwell assays, wound healing tests, and Western blotting. Finally, we constructed tissue microarrays (TMAs) from 174 NSCLC patients and verified our findings using immunohistochemistry staining for HNRNPD from public databases. In both the public datasets, NSCLC tissues with elevated HNRNPD expression had shorter overall survival (OS). In addition, HNRNPD knockdown NSCLC cell lines showed significantly reduced proliferation, invasion, and metastatic capacity via the PI3K-AKT pathway. Finally, elevated HNRNPD expression in NSCLC TMAs was linked to a poorer prognosis and decreased PD-L1 expression levels. HNRNPD is associated with a poorer prognosis in NSCLC and affects tumor growth and metastasis via the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Danni Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jingjing Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wu Z, Zhuang X, Liang M, Sheng L, Huang L, Li Y, Ke Y. Identification of an inflammatory response-related gene prognostic signature and immune microenvironment for cervical cancer. Front Mol Biosci 2024; 11:1394902. [PMID: 38903179 PMCID: PMC11187284 DOI: 10.3389/fmolb.2024.1394902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Cervical cancer (CC) is the fourth most common cancer among women worldwide. As part of the brisk cross-talk between the host and the tumor, prognosis can be affected through inflammatory responses or the tumor microenvironment. However, further exploration of the inflammatory response-related genes that have prognostic value, microenvironment infiltration, and chemotherapeutic therapies in CC is needed. Methods: The clinical data and mRNA expression profiles of CC patients were downloaded from a public database for this study. In the TCGA cohort, a multigene prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) and Cox analyses. CC patients from the GEO cohort were used for validation. K‒M analysis was used to compare overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors of OS. The immune cell infiltration and immune-related functional score were calculated by single-sample gene set enrichment analysis (GSEA). Immunohistochemistry was utilized to validate the protein expression of prognostic genes in CC tissues. Results: A genetic signature model associated with the inflammatory response was built by LASSO Cox regression analysis. Patients in the high-risk group had a significantly lower OS rate. The predictive ability of the prognostic genes was evaluated by means of receiver operating characteristic (ROC) curve analysis. The risk score was confirmed to be an independent predictor of OS by univariate and multivariate Cox analyses. The immune status differed between the high-risk and low-risk groups, and the cancer-related pathways were enriched in the high-risk group according to functional analysis. The risk score was significantly related to tumor stage and immune infiltration type. The expression levels of five prognostic genes (LCK, GCH1, TNFRSF9, ITGA5, and SLC7A1) were positively related to sensitivity to antitumor drugs. Additionally, the expression of prognostic genes was significantly different between CC tissues and myoma patient cervix (non-tumorous) tissues in the separate sample cohort. Conclusion: A model consisting of 5 inflammation-related genes can be used to predict prognosis and influence immune status in CC patients. Furthermore, the inhibition or enhancement of these genes may become a novel alternative therapy.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuanxuan Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Li Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanting Li
- Department of Gynecology and Obstetrics, Anhai Hospital of Jinjiang, Quanzhou, Fujian, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Wei Z, Zhang C, Song Y, Han D, Liu J, Song X, Chao F, Wang S, Xu G, Chen G. CircUBE3A(2,3,4,5) promotes adenylate-uridylate-rich binding factor 1 nuclear translocation to suppress prostate cancer metastasis. Cancer Lett 2024; 588:216743. [PMID: 38423246 DOI: 10.1016/j.canlet.2024.216743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Metastatic progression is the primary cause of mortality in prostate cancer (PCa) patients. Although circular RNAs (circRNAs) have been implicated in cancer progression and metastasis, our current understanding of their role in PCa metastasis remains limited. In this study, we identified that circUBE3A(2,3,4,5), which originated from exons 2, 3, 4 and 5 of the human ubiquitin-protein ligase E3A (UBE3A) gene, was specifically downregulated in PCa tissues and correlated with the Gleason score, bone metastasis, and D'Amico risk classification. Through the in vitro and in vivo experiments, we demonstrated that overexpression of circUBE3A(2,3,4,5) inhibited PCa cell migration, invasion, metastasis, and proliferation. Mechanistically, circUBE3A(2,3,4,5) was found to bind to adenylate-uridylate-rich binding factor 1 (AUF1), promoting the translocation of AUF1 into the nucleus. This led to decreased AUF1 in the cytoplasm, resulting in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) mRNA instability and a subsequent reduction at the protein level. The downregulation of MTHFD2 further inhibited vimentin expression, thereby suppressing PCa cell epithelial-mesenchymal transition. Additionally, two pairs of the short-inverted repeats (TSIRs) in flanking introns were identified to synergistically facilitate the generation of circUBE3A(2,3,4,5) and other circRNAs. In summary, TSIRs-induced circUBE3A(2,3,4,5) acts as a suppressor of PCa metastasis by enhancing AUF1 nuclear translocation, reducing MTHFD2, and subsequently inhibiting vimentin expression. This study characterizes circUBE3A(2,3,4,5) as a functional circRNA and proposes it as a highly promising target for preventing PCa metastasis.
Collapse
Affiliation(s)
- Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China; Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Song
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Xiaoming Song
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, Fujian, China
| | - Shiyu Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| |
Collapse
|
4
|
Deng S, Qian L, Liu L, Liu H, Xu Z, Liu Y, Wang Y, Chen L, Zhou Y. Circular RNA ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by interacting with AUF1. Cancer Sci 2023; 114:1582-1595. [PMID: 36632741 PMCID: PMC10067438 DOI: 10.1111/cas.15723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is one of the leading causes of cancer death in women worldwide. Patients with advanced cervical carcinoma always have a poor prognosis once resistant to cisplatin due to the lack of effective treatment. It is urgent to investigate the molecular mechanisms of cisplatin resistance. Circular RNAs (circRNAs) are known to exert their regulatory functions in a series of malignancies. However, their effects on CSCC remain to be elucidated. Here, we found that cytoplasmic circARHGAP5, derived from second and third exons of the ARHGAP5 gene, was downregulated in cisplatin-resistant tissues compared with normal cervix tissues and untreated cervical cancer tissues. In addition, experiments from overexpression/knockdown cell lines revealed that circARHGAP5 could inhibit cisplatin-mediated cell apoptosis in CSCC cells both in vitro and in vivo. Mechanistically, circARHGAP5 interacted with AU-rich element RNA-binding protein (AUF1) directly. Overexpression of AUF1 could also inhibit cell apoptosis mediated by cisplatin. Furthermore, we detected the potential targets of AUF1 related to the apoptotic pathway and found that bcl-2-like protein 11 (BIM) was not only negatively regulated by AUF1 but positively regulated by circARHGAP5, which indicated that BIM mRNA might be degraded by AUF1 and thereby inhibited tumor cell apoptosis. Collectively, our data indicated that circARHGAP5 directly bound to AUF1 and prevented AUF1 from interacting with BIM mRNA, thereby playing a pivotal role in cisplatin resistance in CSCC. Our study provides insights into overcoming cancer resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Sisi Deng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Lili Qian
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Luwen Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyuan Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhihao Xu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yujie Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yingying Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ying Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
5
|
Hussein D. In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH 4 Therapeutics. Int J Mol Sci 2023; 24:ijms24021210. [PMID: 36674724 PMCID: PMC9862521 DOI: 10.3390/ijms24021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.
Collapse
Affiliation(s)
- Dania Hussein
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Khobar 31441, Saudi Arabia
| |
Collapse
|
6
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
7
|
Yang SL, Guan HQ, Yang HB, Chen Y, Huang XY, Chen L, Shen ZF, Wang LX. The expression and biological effect of NR2F6 in non-small cell lung cancer. Front Oncol 2022; 12:940234. [PMID: 36119482 PMCID: PMC9478584 DOI: 10.3389/fonc.2022.940234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
Objective This study aimed to explore the expression and effect of the nuclear receptor subfamily 2 group F member 6 (NR2F6) gene in non-small cell lung cancer (NSCLC) and provide an experimental basis for the targeted therapy of NSCLC. Method First, the expression of NR2F6 in lung cancer tissues was analyzed using the Gene Expression Omnibus and the Cancer Genome Atlas (TCGA) databases, and the expression of NR2F6 in lung cancer tissues and cells was verified by Western blotting and quantitative polymerase chain reaction. Next, the relationship between NR2F6 expression and the clinicopathological features of lung cancer was analyzed via immunohistochemistry, and the relationship between NR2F6 expression and prognosis was analyzed using the Kaplan–Meier Plotter. The influence of NR2F6 knockdown on the proliferation capacity of lung cancer cells was then verified at cell level. Finally, the expression of heterogeneous nuclear ribonucleoprotein D (HNRNPD) in lung cancer tissue was analyzed using the TCGA database and immunohistochemistry. The impact of HNRNPD knockdown on the proliferation capacity of lung cancer cells was verified at cell level, and the relationship between NR2F6 and HNRNPD was verified by co-immunoprecipitation. Results NR2F6 was highly expressed in lung cancer tissues and cells, and its expression was positively correlated with the depth of invasion, lymphatic metastasis, and clinical stage of lung cancer. High expression of NR2F6 in lung cancer was also significantly associated with poor prognosis. At cell level, NR2F6 knockdown was found to inhibit the proliferation of H460 and H358 in lung cancer cells. Furthermore, the TCGA database and immunohistochemical results showed that HNRNPD was highly expressed in lung cancer tissues and was highly consistent with NR2F6 expression in these tissues. Knockdown of HNRNPD also inhibited the proliferation of lung cancer cells. The co-immunoprecipitation experiment verified that NR2F6 interacted with HNRNPD. Conclusion NR2F6 may interact with HNRNPD to jointly regulate the progression of lung cancer, and this conclusion provides a new experimental basis for the study of the molecular targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Shu lin Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huan qin Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong bao Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao ying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi fa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| | - Liang xing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang xing Wang, ; Zhi fa Shen,
| |
Collapse
|
8
|
Li ML, Ragupathi A, Patel N, Hernandez T, Magsino J, Werlen G, Brewer G, Jacinto E. The RNA-binding protein AUF1 facilitates Akt phosphorylation at the membrane. J Biol Chem 2022; 298:102437. [PMID: 36041631 PMCID: PMC9513781 DOI: 10.1016/j.jbc.2022.102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), which is part of mTOR complex 1 (mTORC1) and mTORC2, controls cellular metabolism in response to levels of nutrients and other growth signals. A hallmark of mTORC2 activation is the phosphorylation of Akt, which becomes upregulated in cancer. How mTORC2 modulates Akt phosphorylation remains poorly understood. Here, we found that the RNA-binding protein, AUF1 (ARE/poly(U)-binding/degradation factor 1), modulates mTORC2/Akt signaling. We determined that AUF1 is required for phosphorylation of Akt at Thr308, Thr450, and Ser473 and that AUF1 also mediates phosphorylation of the mTORC2-modulated metabolic enzyme glutamine fructose-6-phosphate amidotransferase 1 at Ser243. In addition, AUF1 immunoprecipitation followed by quantitative RT–PCR revealed that the mRNAs of Akt, glutamine fructose-6-phosphate amidotransferase 1, and the mTORC2 component SIN1 associate with AUF1. Furthermore, expression of the p40 and p45, but not the p37 or p42, isoforms of AUF1 specifically mediate Akt phosphorylation. In the absence of AUF1, subcellular fractionation indicated that Akt fails to localize to the membrane. However, ectopic expression of a membrane-targeted allele of Akt is sufficient to allow Akt-Ser473 phosphorylation despite AUF1 depletion. Finally, conditions that enhance mTORC2 signaling, such as acute glutamine withdrawal, augment AUF1 phosphorylation, whereas mTOR inhibition abolishes AUF1 phosphorylation. Our findings unravel a role for AUF1 in promoting membrane localization of Akt to facilitate its phosphorylation on this cellular compartment. Targeting AUF1 could have therapeutic benefit for cancers with upregulated mTORC2/Akt signaling.
Collapse
Affiliation(s)
- Mei-Ling Li
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Aparna Ragupathi
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Nikhil Patel
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Tatiana Hernandez
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Jedrick Magsino
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Guy Werlen
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854
| | - Gary Brewer
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| | - Estela Jacinto
- From the Department of Biochemistry and Molecular Biology, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854.
| |
Collapse
|
9
|
Wang Z, Wu S, Zhu C, Shen J. The role of ferroptosis in esophageal cancer. Cancer Cell Int 2022; 22:266. [PMID: 35999642 PMCID: PMC9396912 DOI: 10.1186/s12935-022-02685-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Esophageal cancer is one of the most common cancers with high mortality rate around the world. Although the treatment strategy of this disease has made great progress, the prognosis of advanced patients is not ideal. Ferroptosis, a novel regulatory cell death model, that is different from traditional apoptosis and characterized by increased Fenton reaction mediated by intracellular free iron and lipid peroxidation of cell membrane. Ferroptosis has been proved to be closely linked to a variety of diseases, especially cancer. This review aims to summarize the core mechanism of ferroptosis in esophageal cancer, the regulation of ferroptosis signaling pathway and its current application. At the same time, we emphasize the potential and prospect of ferroptosis in the treatment of esophageal cancer. Collectively, targeting ferroptosis pathway may provide new insights into the diagnosis, treatment and prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Zimin Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| |
Collapse
|
10
|
Kumar V, Kumar A, Kumar M, Lone MR, Mishra D, Chauhan SS. NFκB (RelA) mediates transactivation of hnRNPD in oral cancer cells. Sci Rep 2022; 12:5944. [PMID: 35396527 PMCID: PMC8993925 DOI: 10.1038/s41598-022-09963-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous Ribonucleoprotein D (hnRNPD) is an RNA binding protein involved in post-transcriptional regulation of multiple mediators of carcinogenesis. We previously demonstrated a strong association of hnRNPD over expression with poor outcome in Oral Squamous Cell Carcinoma (OSCC). However, hitherto the precise molecular mechanism of its overexpression in oral cancer was not clear. Therefore, in an attempt to elucidate the transcriptional regulation of hnRNPD expression, we cloned 1406 bp of 5ʹ flanking region of human hnRNPD gene along with 257 bp of its first exon upstream to promoterless luciferase reporter gene in pGL3-Basic. Transfection of the resulting construct in SCC-4 cells yielded 1271 fold higher luciferase activity over parent vector. By promoter deletion analysis, we identified a canonical TATA box containing 126 bp core promoter region that retained ~ 58% activity of the full length promoter. In silico analysis revealed the presence of four putative NFκB binding motifs in the promoter. Sequential deletion of these motifs from the full-length promoter reporter construct coupled with luciferase assays revealed an 82% decrease in promoter activity after deletion of the first (−1358/−1347) motif and 99% reduction after the deletion of second motif (−1052/−1041). In-vivo binding of NFκB (RelA) to these two motifs in SCC-4 cells was confirmed by ChIP assays. Site directed mutagenesis of even one of these two motifs completely abolished promoter activity, while mutagenesis of the remaining two motifs had marginal effect on the same. Consistent with these findings, treatment of SCC-4 cells with PDTC, a known inhibitor of NFκB dramatically reduced the levels hnRNPD mRNA and protein. Finally, the expression of hnRNPD and NFκB in clinical specimen from 37 oral cancer patients was assessed and subjected to Spearmen’s Correlation analysis which revealed a strong positive correlation between the two. Thus, results of the present study for the first time convincingly demonstrate NFκB (RelA) mediated transcriptional upregulation of hnRNPD expression in oral cancer.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, India
| | - Moien Rasheed Lone
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Deepika Mishra
- Division of Oral Pathology, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Ting Z, Guiwen G, Jing Z, Huiling Z, Deyao L, Wengong W, Fengmin L, Xiangmei C. E2F1‐mediated AUF1 upregulation promotes HCC development and enhances drug resistance via stabilization of AKR1B10. Cancer Sci 2022; 113:1154-1167. [PMID: 35178834 PMCID: PMC8990806 DOI: 10.1111/cas.15272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
The AU‐rich binding factor 1 (AUF1) is one of the well known adenylate‐uridylate‐rich element (ARE)‐specific RNA‐binding proteins (ARE‐BPs) for which dysregulation has been reported in various human cancers. However, the involvement of AUF1 in the initiation and progression of hepatocellular carcinoma (HCC) is still elusive. In this study, we aimed at exploring the clinical significance, function, and mechanism of the abnormal expression of AUF1 in HCC. Using a bioinformatics analysis of The Cancer Genome Atlas (TCGA) and Liver Cancer Institute (LCI) database, we identified that AUF1 was abnormally highly expressed in HCC tissues and that the high expression of AUF1 was correlated with poor prognosis in patients with HCC. We also confirmed the increased AUF1 expression and its prognostic value in our HBV‐related HCC cohorts. AUF1 overexpression in hepatoma cells promoted cell proliferation and increased the resistance of hepatoma cells toward doxorubicin, whereas knockdown of AUF1 exerted the opposite effects. Mechanistically, we demonstrated that AKR1B10 was a critical target of AUF1 and was essential for sustaining the AUF1‐induced proliferation and drug resistance of hepatoma cells. AUF1 increased AKR1B10 expression by binding to the 3′UTR region of AKR1B10 mRNA and stabilizing AKR1B10 mRNA. Additionally, we demonstrated that E2F1 enhanced AUF1 expression in HCC at the transcription level. Our study revealed a novel role of AUF1 in promoting the development and drug resistance of HCC via the post‐transcriptional regulation of AKR1B10 expression. The E2F1/AUF1/AKR1B10 axis can serve as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhang Ting
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Guan Guiwen
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Zhang Jing
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Zheng Huiling
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Li Deyao
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Wang Wengong
- Department of Biochemistry and Molecular Biology Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Lu Fengmin
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| | - Chen Xiangmei
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 P. R. China
| |
Collapse
|
12
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
13
|
Yu D, Li X, Wang Z, Jiang S, Yan T, Fang K, Shi Y, Jiang Z, Zhang S. Role of AUF1 in modulating the proliferation, migration and senescence of skin cells. Exp Ther Med 2021; 23:45. [PMID: 34934424 PMCID: PMC8652399 DOI: 10.3892/etm.2021.10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
AU-rich element RNA-binding factor 1 (AUF1) is a classical RNA-binding protein. AUF1 influences the process of development, apoptosis and tumorigenesis by interacting with adenylate-uridylate rich element-bearing mRNAs. Human skin is the largest organ of the body and acts as a protective barrier against pathogens and injuries. The aim of the present study was to explore the function and potential molecular pathways of AUF1 in human skin cells. AUF1 was overexpressed in human keratinocyte HaCaT cells and human skin fibroblast WS1 cells using adenoviruses and silenced using lentiviruses. AUF1 overexpression facilitated cell proliferation, whereas AUF1 knockdown induced the opposite effect. AUF1 reduced apoptosis but did not affect cell cycle progression. Forced AUF1 expression promoted the migration of human skin cells, as demonstrated by a scratch wound healing assay. Cell senescence was alleviated in AUF1-overexpressing skin cells, while AUF1 knockdown increased cell senescence. WS1 cells with AUF1 overexpression and silencing were used for RNA-sequencing and Kyoto Encyclopedia of Genes and Genomes-based pathway analysis to identify AUF1-affected mRNAs. A total of 18 mRNAs (eight mRNAs with positive associations and 10 mRNAs with negative associations) revealed consistent associations with both AUF1 overexpression and silencing. Enriched pathways associated with AUF1 expression included 'MAPK', 'cell adhesion molecules', 'proteasome', 'cellular senescence' and 'TGF-β signaling', indicating a complex regulatory network. Overall, the results of the present study revealed that AUF1 is involved in the proliferation, migration and senescence of skin cells in vitro and may be a potential target for cosmetic and disease treatment of skin.
Collapse
Affiliation(s)
- Daojiang Yu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Xiaoqian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhenyu Wang
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Sheng Jiang
- Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Tao Yan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kai Fang
- Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Yuhong Shi
- Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Zhiqiang Jiang
- Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China.,Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| |
Collapse
|
14
|
AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int J Mol Sci 2021; 23:ijms23010096. [PMID: 35008519 PMCID: PMC8744917 DOI: 10.3390/ijms23010096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.
Collapse
|
15
|
Xu B, Liu F, Gao Y, Sun J, Li Y, Lin Y, Liu X, Wen Y, Yi S, Dang J, Tu P, Wang Y. High Expression of IKZF2 in Malignant T Cells Promotes Disease Progression in Cutaneous T Cell Lymphoma. Acta Derm Venereol 2021; 101:adv00613. [PMID: 34853863 PMCID: PMC9472098 DOI: 10.2340/actadv.v101.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cutaneous T cell lymphoma is a generally indolent disease derived from skin-homing mature T cells. However, in advanced stages, cutaneous T cell lymphoma may manifest aggressive clinical behaviour and lead to a poor prognosis. The mechanism of disease progression in cutaneous T cell lymphoma remains unknown. This study, based on a large clinical cohort, found that IKZF2, an essential transcription factor during T cell development and differentiation, showed stage-dependent overexpression in the malignant T cells in mycosis fungoides lesions. IKZF2 is specifically over-expressed in advanced-stage mycosis fungoides lesions, and correlates with poor prognosis. Mechanistically, overexpression of IKZF2 promotes cutaneous T cell lymphoma progression via inhibiting malignant cell apoptosis and may contribute to tumour immune escape by downregulating major histocompatibility complex II molecules and up-regulating the production of anti-inflammatory cytokine interleukin-10 by malignant T cells. These results demonstrate the important role of IKZF2 in high-risk cutaneous T cell lymphoma and pave the way for future targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, No.8 Xishiku Street, Xi Cheng District, Beijing 100034, China.
| |
Collapse
|
16
|
Wang C, Huang H. Effects of ribosomal associated protein hnRNP D in gemcitabine-resistant pancreatic cancer. Biochem Biophys Res Commun 2021; 579:181-187. [PMID: 34624736 DOI: 10.1016/j.bbrc.2021.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of ribosomal associated protein hnRNP D in resistance to gemcitabine (GEM) in pancreatic cancer cells. METHODS The expressions of hnRNP D in clinical pancreatic cancer tissues were detected by immunohistochemistry. The proliferation of pancreatic cancer cell lines (PANC-1, BXPC-3, SW1990 and ASPC-1) were measured by CCK8 assay. IC50 of each cell line was calculated and compared. The expressions of hnRNP D protein in pancreatic cancer cell lines were detected by Western Blot assay. The change of hnRNP D expression was confirmed by qPCR and Western Blot after the expressions of hnRNP D in PANC-1 cells being down-regulated by miRNA. And than the apoptosis rate and cell cycle of PANC-1 cells were detected by flow cytometry, while the expressions of apoptosis-related proteins cleaved caspase3, P-Akt, AKT and P65 were detected by Western Blot. RESULTS HnRNP D protein expressed in clinical pancreatic tissues widely. The IC50 of GEM in PANC-1 was the highest while in BXPC-3 was the lowest. And the expression of hnRNP D protein in PANC-1 was the highest while in BXPC-3 was the lowest. After miRNA interfering, the expressions of hnRNP D protein and gene were significantly decreased in PANC-1 cells. The decrease of hnRNP D expression promoted cell apoptosis and inhibited the cell transformation to the S phase in cell cycle. Under the intervention of GEM, cleaved caspase3 expression was significantly increased, while p-Akt, AKT and P65 expression was significantly decreased. CONCLUSION HnRNP D was associated with resistance to GEM in pancreatic cancer cells. Decreasing of hnRNP D expression promoted cell apoptosis induced by GEM.
Collapse
Affiliation(s)
- Congfei Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
17
|
Feng Y, Feng Y, Gu L, Liu P, Cao J, Zhang S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front Oncol 2021; 11:720632. [PMID: 34513700 PMCID: PMC8429800 DOI: 10.3389/fonc.2021.720632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation and radioactive materials have been widely used in industry, medicine, science and military. The efficacy of radiotherapy and adverse effects of normal tissues are closed related to cellular radiosensitivity. Molecular mechanisms underlying radiosensitivity are of significance to tumor cell radiosensitization as well as normal tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation, BH4 availability is diminished due to its oxidation, which subsequently leads to NOS uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects structural and functional flaws of tumor blood vessels, which enhances radiotherapy efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the potential mechanisms. These advances have demonstrated that it is possible to modulate cellular radiosensitivity through BH4 metabolism.
Collapse
Affiliation(s)
- Yang Feng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Yahui Feng
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China
| | - Liming Gu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Pengfei Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Gonçalves DA, Jasiulionis MG, de Melo FHM. The Role of the BH4 Cofactor in Nitric Oxide Synthase Activity and Cancer Progression: Two Sides of the Same Coin. Int J Mol Sci 2021; 22:9546. [PMID: 34502450 PMCID: PMC8431490 DOI: 10.3390/ijms22179546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer development is associated with abnormal proliferation, genetic instability, cell death resistance, metabolic reprogramming, immunity evasion, and metastasis. These alterations are triggered by genetic and epigenetic alterations in genes that control cell homeostasis. Increased reactive oxygen and nitrogen species (ROS, RNS) induced by different enzymes and reactions with distinct molecules contribute to malignant transformation and tumor progression by modifying DNA, proteins, and lipids, altering their activities. Nitric oxide synthase plays a central role in oncogenic signaling modulation and redox landscape. Overexpression of the three NOS isoforms has been found in innumerous types of cancer contributing to tumor growth and development. Although the main function of NOS is the production of nitric oxide (NO), it can be a source of ROS in some pathological conditions. Decreased tetrahydrobiopterin (BH4) cofactor availability is involved in NOS dysfunction, leading to ROS production and reduced levels of NO. The regulation of NOSs by BH4 in cancer is controversial since BH4 has been reported as a pro-tumoral or an antitumoral molecule. Therefore, in this review, the role of BH4 in the control of NOS activity and its involvement in the capabilities acquired along tumor progression of different cancers was described.
Collapse
Affiliation(s)
- Diego Assis Gonçalves
- Micro-Imuno-Parasitology Department, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
19
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Cerasuolo A, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front Cell Dev Biol 2020; 8:474. [PMID: 32596243 PMCID: PMC7303290 DOI: 10.3389/fcell.2020.00474] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The spliceosomal complex components, together with the heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins, regulate the process of constitutive and alternative splicing, the latter leading to the production of mRNA isoforms coding multiple proteins from a single pre-mRNA molecule. The expression of splicing factors is frequently deregulated in different cancer types causing the generation of oncogenic proteins involved in cancer hallmarks. Cervical cancer is caused by persistent infection with oncogenic human papillomaviruses (HPVs) and constitutive expression of viral oncogenes. The aberrant activity of hnRNPs and SR proteins in cervical neoplasia has been shown to trigger the production of oncoproteins through the processing of pre-mRNA transcripts either derived from human genes or HPV genomes. Indeed, hnRNP and SR splicing factors have been shown to regulate the production of viral oncoprotein isoforms necessary for the completion of viral life cycle and for cell transformation. Target-therapy strategies against hnRNPs and SR proteins, causing simultaneous reduction of oncogenic factors and inhibition of HPV replication, are under development. In this review, we describe the current knowledge of the functional link between RNA splicing factors and deregulated cellular as well as viral RNA maturation in cervical cancer and the opportunity of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumouri IRCCS–Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
21
|
RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. Int J Mol Sci 2020; 21:ijms21082969. [PMID: 32340118 PMCID: PMC7215867 DOI: 10.3390/ijms21082969] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of the genome is transcribed into pieces of non-(protein) coding RNA, among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile molecules that govern basic cellular processes including transcription, splicing, RNA stability, and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a small number of known cancer-associated lncRNAs have been found to be regulated by the interaction with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate, by various means, two aspects in particular, namely the stability and the localization of lncRNAs. Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions, for example regarding the context specificity of these regulatory mechanisms that, in part, is based on the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge on how RBPs facilitate the transport of lncRNAs between different cellular compartments.
Collapse
|
22
|
Guo Y, Zhang T, Shi Y, Zhang J, Li M, Lu F, Zhang J, Chen X, Ding S. Helicobacter pylori inhibits GKN1 expression via the CagA/p-ERK/AUF1 pathway. Helicobacter 2020; 25:e12665. [PMID: 31657090 DOI: 10.1111/hel.12665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have shown that gastrokine 1 (GKN1), an important tumor suppressor gene, is downregulated in Helicobacter pylori (H. pylori) infected gastric mucosa and gastric cancer. However, the underlying mechanism is poorly understood. Herein, we investigated the potential mechanism of H. pylori-induced GKN1 downregulation. MATERIALS AND METHODS GKN1 and AU-rich element RNA-binding factor 1 (AUF1) expressions were assessed by quantitative real-time PCR, Western blot, or immunohistochemistry in H. pylori-infected tissues and H. pylori co-cultured cell lines. The regulation of AUF1 on GKN1 was determined by RNA pulldown assay, RNA immunoprecipitation, mRNA turnover, and luciferase activity assays. The involvement of phosphorylated extra-cellular signal-regulated kinase (p-ERK) or CagA in H. pylori-induced AUF1 expression was verified using p-ERK inhibitor or CagA knockout H. pylori. In addition, the cell proliferation and migration capacities of AUF1-knockdown cells were investigated. RESULTS GKN1 expression progressively decreased from H. pylori-infected gastritis to gastric cancer tissues. H. pylori co-culture also induced significant GKN1 reduction in GES-1 and BGC-823 cells. Besides, the mRNA level of GKN1 and AUF1 in human gastric mucosa showed negative correlation significantly. AUF1 knockdown resulted in upregulation of GKN1 expression and promoted GKN1 mRNA decay by binding the 3' untranslated region of GKN1 mRNA H. pylori-induced AUF1 expression was associated with p-ERK activation and CagA. Furthermore, knockdown of AUF1 significantly inhibited cell viability, migration ability, and arrested fewer cells in S-phase. CONCLUSION Our data demonstrated that H. pylori infection downregulated GKN1 expression via the CagA/p-ERK/AUF1 pathway. AUF1 promoted gastric cancer at least partly through downregulating GKN1, which presented a novel potential target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yanlei Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Mingyu Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
24
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
25
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
26
|
RNA-binding protein AUF1 suppresses miR-122 biogenesis by down-regulating Dicer1 in hepatocellular carcinoma. Oncotarget 2018; 9:14815-14827. [PMID: 29599909 PMCID: PMC5871080 DOI: 10.18632/oncotarget.24079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common cancers worldwide, especially in developing countries. Although the chronic infections of hepatitis B and C viruses have been established as the etiological factors of HCC, the mechanism for the tumorigenesis and development of HCC is still unclear. The liver-specific microRNA-122 (miR-122), an established tumor-suppressor miRNA, is often down-regulated in HCC, while the underlying mechanism is not well understood. Here we report that the AU-rich element-binding factor AUF1 suppresses the expression of Dicer1, the type III RNase that is required for microRNA maturation, leading to the inhibited biogenesis of miR-122. Overexpression of AUF1 led to the decreased expression of Dicer1 and miR-122, while the level of the miR-122 precursor (pre-miR-122) was increased. On the other hand, siRNA of AUF1 (siAUF1) increased the levels of Dicer1 mRNA and miR-122, but it reduced the abundance of pre-miR-122. Consistent with the reported data, this study demonstrated that AUF1 and Dicer1 showed opposite expression pattern in both human HCC tissues and cell lines. In addition, AUF1 inhibited the expression of Dicer1 by interacting with the 3′ untranslated region (3′UTR) and coding region of DICER1 mRNA. Moreover, the knockdown of AUF1 by siRNA altered the expression of other miRNAs and promoted HCC cell death. In conclusion, AUF1 down-regulates the expression miR-122 by interacting with the 3′UTR and coding region of DICER1 mRNA and suppressing Dicer1 expression. The AUF1/Dicer1/miR-122 pathway might play a critical role in the development of HCC.
Collapse
|