1
|
Li H, Zhou Y, Xiao J, Liu F. A comprehensive prognostic and immunological implications of Gremlin 1 in lung adenocarcinoma. Front Immunol 2025; 16:1529195. [PMID: 40066442 PMCID: PMC11891240 DOI: 10.3389/fimmu.2025.1529195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer globally, known for its high invasiveness, metastatic potential, and notable heterogeneity, particularly in its response to immunotherapy. Gremlin 1 (GREM1) is implicated in tumor progression and poor prognosis in multiple cancers. However, GREM1's specific role in LUAD remains unclear. This study systematically examines GREM1 expression in LUAD and its association with tumor progression, immune microenvironment, and prognosis. Methods Gene expression data from the TCGA and GSE31210 databases were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), GO and KEGG enrichment analyses. The prognostic value of GREM1 was evaluated through survival analysis, Cox regression, and Kaplan-Meier curves. Additionally, immune microenvironment analysis was conducted to explore the relationship between GREM1 and immune cell infiltration. In vitro experiments, including Western blot and assays for cell proliferation, migration, and invasion, were performed to confirm the specific role of GREM1 in LUAD cells. Results GREM1 was significantly upregulated in tumor tissues and correlated with poor prognosis. Moreover, GREM1 was significantly associated with immune cell infiltration and immunotherapy response within the immune microenvironment. In vitro experiments confirmed that GREM1 overexpression significantly promoted LUAD cell proliferation, migration, and epithelial-mesenchymal transition (EMT), whereas GREM1 knockdown suppressed these functions. Conclusions A comprehensive analysis indicates that GREM1 is crucial in LUAD progression, with its overexpression predicting poor prognosis. GREM1 could be a potential therapeutic target for LUAD, providing insights for personalized therapy optimization.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaqing Xiao
- Institute of Disinfection and Infection Control, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Jin Z, Cao Y. Gremlin1: a BMP antagonist with therapeutic potential in Oncology. Invest New Drugs 2024; 42:716-727. [PMID: 39347850 DOI: 10.1007/s10637-024-01474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Gremlins, originating from early 20th-century Western folklore, are mythical creatures known for causing mechanical malfunctions and electronic failures, aptly dubbed "little devils". Analogously, GREM1 acts like a horde of these mischievous entities by antagonizing the bone morphogenetic protein (BMP signaling) pathway or through other non-BMP dependent mechanisms (such as binding to Fibroblast Growth Factor Receptor 1and Epidermal Growth Factor Receptor) contributing to the malignant progression of various cancers. The overexpression of GREM1 promotes tumor cell growth and survival, enhances angiogenesis within the tumor microenvironment, and creates favorable conditions for tumor development and dissemination. Consequently, inhibiting the activity of GREM1 or blocking its interaction with BMP presents a promising strategy for suppressing tumor growth and metastasis. However, the role of GREM1 in cancer remains a subject of debate, with evidence suggesting both oncogenic and tumor-suppressive functions. Currently, several pharmaceutical companies are researching the GREM1 target, with some advancing to Phase I/II clinical trials. This article will provide a detailed overview of the GREM1 target and explore its potential role in cancer therapy.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
3
|
Tindall RR, Faraoni EY, Li J, Zhang Y, Ting SM, Okeugo B, Zhao X, Liu Y, Younes M, Shen Q, Bailey-Lundberg JM, Cao Y, Ko TC. Increased Gremlin1 Expression in Pancreatic Ductal Adenocarcinoma Promotes a Fibrogenic Stromal Microenvironment. Pancreas 2024; 53:e808-e817. [PMID: 38829570 PMCID: PMC11615151 DOI: 10.1097/mpa.0000000000002378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) microenvironment is primarily composed of cancer-associated fibroblasts and immune cells. Gremlin1 (Grem1) is a profibrogenic factor that promotes tumorigenesis in several cancers. However, the role of Grem1 in the PDAC microenvironment is not defined. MATERIALS AND METHODS We correlated Grem1 levels with activated stroma and immune cells in human PDAC using The Cancer Genome Atlas RNA-sequencing data and characterized expression of Grem1 transcripts and isoforms in pancreatic cell lines and PDAC tissues. We assessed the role of Grem1 in the microenvironment by in vitro studies. RESULTS Grem1 expression is associated with an activated stroma and increased M1 and M2 macrophages. Only full length Grem1 variant 1 and isoform 1 were detectable in human pancreatic cells, and remarkably high levels of Grem1 were observed in pancreatic fibroblasts. Immunohistochemistry detected Grem1 protein in PDAC tumor and stromal cells, which correlated with infiltrating macrophages in PDAC tumors. Grem1 knockdown in cancer-associated fibroblasts suppressed transforming growth factor β-induced extracellular matrix proteins. Grem1 recombinant protein treatment in vitro increased M1 and M2 macrophages. CONCLUSIONS Grem1 acts as a profibrogenic factor in the PDAC microenvironment via modulation of fibroblasts and macrophages. Grem1 may have the potential to be developed as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Rachel R. Tindall
- Department of Surgery, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Erika Y. Faraoni
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiajing Li
- Department of Surgery, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yinjie Zhang
- Department of Surgery, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shun-Ming Ting
- Department of Neurology, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiurong Zhao
- Department of Neurology, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State Univ. Health Sciences Center, New Orleans, LA 70112, USA
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanna Cao
- Department of Surgery, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tien C. Ko
- Department of Surgery, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Zırh S, Bahador Zırh E, Erol S, Karakoç Sökmensüer L, Bozdağ G, Müftüoğlu SF. Investigation of FF-MAS oxysterole's role in follicular development and its relation to hedgehog signal pathway. Sci Rep 2024; 14:24863. [PMID: 39438722 PMCID: PMC11496726 DOI: 10.1038/s41598-024-76281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The Hedgehog signaling pathway plays a crucial role in folliculogenesis; however, the association between FF-MAS oxysterol activity in folliculogenesis and the Hedgehog signaling pathway has not been revealed. The evaluation of FF-MAS activity in polycystic ovary syndrome (PCOS) with folliculogenesis disorder might provide a new approach to tackle follicular and oocyte maturation failure. The question is: does FF-MAS oxysterol affect granulosa cell (GC) proliferation? If so, is this effect facilitated through the Hedgehog pathway? To answer these questions, GCs were isolated from follicle fluids obtained from patients undergoing oocyte retrieval during in vitro fertilization (IVF) treatment. After the isolated GCs were incubated in different cell culture media, the levels of Hedgehog pathway components (SMO, Gli1) were measured by using immunohistochemical methods, cytoELISA, and qRT-PCR. Meanwhile, cell proliferation rates were determined. Significant increases (p < 0.001) in SMO and Gli1 expressions and cell proliferation were observed in the FF-MAS-treated subgroups of both PCOS and male factor participants compared to the FF-MAS deficient subgroup. Remarkably, FF-MAS positively affected the pathway components despite the pathway inhibitor cyclopamine. Although the increase in Hedgehog pathway components was slightly higher in the male factor group (MF), it was not statistically significant. In our study, we demonstrated for the first time the molecular effect of FF-MAS on human GCs in folliculogenesis. Since FF-MAS is already used in assisted reproductive techniques in animals and is known to be synthesized in the human body, it could be considered a new approach in human IVF treatments.
Collapse
Affiliation(s)
- Selim Zırh
- Faculty of Medicine, Department of Histology and Embryology, Erzincan Binali Yıldırım University, Erzincan, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Elham Bahador Zırh
- Faculty of Medicine, Department of Histology and Embryology, TOBB Economy and Technology University, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Süleyman Erol
- Ankara Etlik Lady Zübeyde Gynaecology Education and Research Hospital, Assisted Reproductive Techniques, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Lale Karakoç Sökmensüer
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Gürkan Bozdağ
- Faculty of Medicine, Obstetrics and Gynecology, Koç University, Ankara, Turkey
| | - Sevda Fatma Müftüoğlu
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
6
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. Pancreatic cancer and fibrosis: Targeting metabolic reprogramming and crosstalk of cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2023; 14:1152312. [PMID: 37033960 PMCID: PMC10073477 DOI: 10.3389/fimmu.2023.1152312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Pancreatic cancer is one of the most dangerous types of cancer today, notable for its low survival rate and fibrosis. Deciphering the cellular composition and intercellular interactions in the tumor microenvironment (TME) is a necessary prerequisite to combat pancreatic cancer with precision. Cancer-associated fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key role in tumor progression. CAFs display significant heterogeneity and perform different roles in tumor progression. Tumor cells turn CAFs into their slaves by inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug resistance and immune evasion. This article reviews the impact of metabolic reprogramming, effect of obesity and cellular crosstalk of CAFs and tumor cells on fibrosis and describes relevant therapies targeting the metabolic reprogramming.
Collapse
|
7
|
Wang D, Jiang H. Long noncoding RNA long intergenic non-protein-coding RNA 173 contributes to nasopharyngeal carcinoma progression by regulating microRNA-765/Gremlin 1 pathway. Hum Exp Toxicol 2023; 42:9603271231172921. [PMID: 37365917 DOI: 10.1177/09603271231172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Long intergenic non-protein-coding RNA 173 (LINC00173) executes vital functions in various cancers. Nevertheless, its role and expression in nasopharyngeal carcinoma (NPC) have yet to be investigated. Here, we investigated its effects on the malignancy characteristics of NPC and elucidated the potential molecular mechanism of LINC00173 in NPC progression. METHODS Quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting were conducted to estimate the LINC00173, microRNA-765 (miR-765), and Gremlin 1 (GREM1) expressions in NPC cells and tissues. Cell counting kit-8 (CCK8), colony formation, and wound healing experiments were done to evaluate the proliferation, growth, and migration of NPC cells, respectively. The tumorous growth of NPC cells in vivo was assessed through the xenograft tumor experiment. Furthermore, the interactions among miR-765, LINC00173, and GREM1 were investigated through bioinformatics analyses, luciferase reporter and RNA immunoprecipitation chip assays. RESULTS An upregulated LINC00173 expression was found in NPC cell lines and tissues. The functional experiments uncovered that its downregulation repressed NPC cell proliferation, growth, and migration. In addition, LINC00173 knockdown hampered the NPC cells' tumorous growth in vivo. These effects could partially be reversed by downregulating miR-765. GREM1 is a downstream target of miR-765. GREM1 knockdown could repress the proliferation, growth, and migration of NPC cells. Nonetheless, these anti-tumor effects could be abolished by miR-765 downregulation. Mechanistically, LINC00173 increased the expression of GREM1 by binding with miR-765. CONCLUSIONS LINC00173 functions as an oncogenic factor by binding with miR-765 to promote the progression of NPC via GREM1 upregulation. This study provides a novel insight into the molecular mechanisms involved in NPC progression.
Collapse
Affiliation(s)
- Dan Wang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| | - Heng Jiang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Resveratrol Induces Apoptosis, Suppresses Migration, and Invasion of Cervical Cancer Cells by Inhibiting the Hedgehog Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8453011. [PMID: 36246980 PMCID: PMC9568329 DOI: 10.1155/2022/8453011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
To investigate the effect and mechanism of resveratrol on the biological behavior of cervical cancer cells (HeLa cells), the apoptosis, migration, and invasion of HeLa cells were detected by flow cytometry, wound healing, and transwell assays. The expression levels of Hedgehog signal pathway proteins (smoothened (SMO), zinc finger transcription factors (Gli1), and sonic hedgehog homolog (Shh)) were detected by quantitative real-time PCR (qPCR) and western blotting. Compared with that control group, resveratrol (RES) significantly induced apoptosis, inhibited the migration and invasion of the HeLa cells. The expression of SMO, Gli1, and Shh were downregulated in the HeLa cells treated with RES. The Hedgehog agonist purmorphamine (PUR) reversed the RES-induced increase of apoptosis and reduction of migration and invasion in the HeLa cells. In conclusion, RES induced the apoptosis and suppressed the migration and invasion of HeLa cells by inhibiting Hedgehog signal pathway.
Collapse
|
9
|
Yang S, Zhang Y, Hua Y, Cui M, Wang M, Gao J, Liu Q, Liao Q. GREM1 is a novel serum diagnostic marker and potential therapeutic target for pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:968610. [PMID: 36091126 PMCID: PMC9458890 DOI: 10.3389/fonc.2022.968610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm with rising incidence worldwide. Gremlin 1 (GREM1), a regulator of bone morphogenetic protein (BMP) signaling, fine-tunes extensive biological processes, including organ morphology, cellular metabolism, and multiple pathological developments. The roles of GREM1 in PDAC remain unknown. Methods Varieties of public databases and online software were employed to analyze the expressions at transcription and protein levels of GREM1 in multiple malignant neoplasms including PDAC, and in addition, its potential pro-tumoral functions in PDAC were further evaluated. A total of 340 serum samples of pancreatic disease, including PDAC, low-grade malignant pancreatic neoplasm, benign pancreatic neoplasm, pancreatitis, and 132 healthy controls, were collected to detect GREM1. The roles of serum GREM1 in the diagnosis and prediction of survival of PDAC after radical resection were also analyzed. Results Bioinformatics analyses revealed that GREM1 was overexpressed in PDAC and predicted a poorer survival in PDAC. A higher protein level of GREM1 in PDAC correlated with stroma formation and immunosuppression by recruiting varieties of immunosuppressive cells, including T regulatory cells (Tregs), M2 macrophages, myeloid-derived suppressor cells (MDSCs), and exhaustion T cells into the tumor microenvironment. A higher level of serum GREM1 was observed in PDAC patients, compared to healthy control (p < 0.001). Serum GREM1 had a good diagnostic value (area under the curve (AUC) = 0.718, p < 0.001), and its combination with carbohydrate antigen 199 (CA199) achieved a better diagnostic efficacy (AUC = 0.914, p < 0.001), compared to CA199 alone. The cutoff value was calculated by receiver operating characteristic (ROC) analysis, and PDAC patients were divided into two groups of low and high GREM1. Logistic analyses showed serum GREM1 positively correlated with tumor size (hazard ratio (HR) = 7.097, p = 0.032) and histopathological grades (HR = 2.898, p = 0.014). High-level serum GREM1 (1,117.8 pg/ml) showed a shorter postoperative survival (p = 0.0394). Conclusion Higher intra-tumoral expression of GREM1 in PDAC contributes to tumor stroma and immunosuppressive tumor microenvironment, presenting its therapeutic potential. High-level serum GREM1 predicts poorer survival after resection. A combination of serum CA199 and GREM1 shows a stronger diagnostic efficacy in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Qiaofei Liu, ; Quan Liao,
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Qiaofei Liu, ; Quan Liao,
| |
Collapse
|
10
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:biomedicines10020301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: (W.E.-H.); (I.M.T.)
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (W.E.-H.); (I.M.T.)
| |
Collapse
|
11
|
Ye Z, Zhu Z, Xie J, Feng Z, Li Y, Xu X, Li W, Chen W. Hsa_circ_0000069 Knockdown Inhibits Tumorigenesis and Exosomes with Downregulated hsa_circ_0000069 Suppress Malignant Transformation via Inhibition of STIL in Pancreatic Cancer. Int J Nanomedicine 2020; 15:9859-9873. [PMID: 33324055 PMCID: PMC7732169 DOI: 10.2147/ijn.s279258] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNAs (circRNAs) play an important role in the tumorigenesis of pancreatic cancer. However, the expression profiles and roles of circRNAs in pancreatic cancer remain largely unknown. Methods To identify differentially expressed circRNAs (DEcircRNAs) between pancreatic cancer and matched normal tissues, bioinformatics analysis was performed. Hsa_circ_0000069 was identified by 0.bioinformatics analysis. In addition, the level of hsa_circ_0000069 in pancreatic cancer tissues and cell lines, and pancreatic cancer cell-derived exosomes were assessed using RT-qPCR assay. Results The expression of hsa_circ_0000069 was markedly upregulated in pancreatic cancer tissues and cell lines. SCL/TAL1 interrupting locus (STIL) is the parent gene for hsa_circ_0000069, and its high expression was related to poor overall survival in patients with pancreatic cancer. In addition, downregulation of hsa_circ_0000069 markedly suppressed STIL expression, induced the apoptosis and cell cycle arrest, and inhibited the proliferation, migration and invasion in pancreatic cancer cells. Moreover, hsa_circ_0000069 knockdown inhibited the growth of xenograft pancreatic cancer tumors in vivo. Furthermore, human pancreatic duct epithelial cells (HPDE) are capable of internalizing SW1990 cell-derived exosomes, allowing the transfer of hsa_circ_0000069. Significantly, SW1990 cell-derived exosomes promoted the proliferation, migration and cell cycle progression of HPDE cells, whereas exosomes with downregulated hsa_circ_0000069 suppressed the proliferation, migration and cell cycle progression of HPDE cells, by suppressing STIL expression. Conclusion Our results suggest that hsa_circ_0000069 knockdown could inhibit pancreatic cancer tumorigenesis and exosomes with downregulated hsa_circ_0000069 could suppress HPDE cell malignant transformation. Collectively, hsa_circ_0000069 might be a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhenyu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Zhaobi Zhu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Jiaming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Zhenyu Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Yecheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Xiangrong Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Wei Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, People's Republic of China
| |
Collapse
|
12
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
13
|
Targeted Disruption of Bone Marrow Stromal Cell-Derived Gremlin1 Limits Multiple Myeloma Disease Progression In Vivo. Cancers (Basel) 2020; 12:cancers12082149. [PMID: 32756430 PMCID: PMC7464474 DOI: 10.3390/cancers12082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
In most instances, multiple myeloma (MM) plasma cells (PCs) are reliant on factors made by cells of the bone marrow (BM) stroma for their survival and growth. To date, the nature and cellular composition of the BM tumor microenvironment and the critical factors which drive tumor progression remain imprecisely defined. Our studies show that Gremlin1 (Grem1), a highly conserved protein, which is abundantly secreted by a subset of BM mesenchymal stromal cells, plays a critical role in MM disease development. Analysis of human and mouse BM stromal samples by quantitative PCR showed that GREM1/Grem1 expression was significantly higher in the MM tumor-bearing cohorts compared to healthy controls (p < 0.05, Mann–Whitney test). Additionally, BM-stromal cells cultured with 5TGM1 MM PC line expressed significantly higher levels of Grem1, compared to stromal cells alone (p < 0.01, t-test), suggesting that MM PCs promote increased Grem1 expression in stromal cells. Furthermore, the proliferation of 5TGM1 MM PCs was found to be significantly increased when co-cultured with Grem1-overexpressing stromal cells (p < 0.01, t-test). To examine the role of Grem1 in MM disease in vivo, we utilized the 5TGM1/KaLwRij mouse model of MM. Our studies showed that, compared to immunoglobulin G (IgG) control antibody-treated mice, mice treated with an anti-Grem1 neutralizing antibody had a decrease in MM tumor burden of up to 81.2% (p < 0.05, two-way ANOVA). The studies presented here demonstrate, for the first time, a novel positive feedback loop between MM PCs and BM stroma, and that inhibiting this vicious cycle with a neutralizing antibody can dramatically reduce tumor burden in a preclinical mouse model of MM.
Collapse
|
14
|
Ke B, Wang XN, Liu N, Li B, Wang XJ, Zhang RP, Liang H. Sonic Hedgehog/Gli1 Signaling Pathway Regulates Cell Migration and Invasion via Induction of Epithelial-to-mesenchymal Transition in Gastric Cancer. J Cancer 2020; 11:3932-3943. [PMID: 32328197 PMCID: PMC7171499 DOI: 10.7150/jca.42900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The aberrant activation of the Sonic hedgehog (Shh) signaling pathway is involved in progression of several types of cancer, including gastric cancer (GC). However, it remains uncertain whether it also plays a critical role in promoting cancer initiation and progression by inducing epithelial-to-mesenchymal transition (EMT) in GC. Thus, the aim of the present study was to determine whether the Shh pathway is involved in GC, and to investigate the function of the Shh pathway in the induction of EMT in GC. Materials and methods: The expression levels of Shh pathway members and EMT markers were examined in GC tissues by immunohistochemistry. The association between these factors and patient clinicopathological characteristics was analyzed. In addition, Gli-antagonist 61 (GANT61) was used to block Shh/Gli1 pathway activity, and recombinant Shh proteins (N-Shh) were used to activate the Shh pathway in GC cells. Wound healing and Transwell invasion and migration assays were performed to assess the effects of the Shh pathway on the migration and invasion of GC cells in vitro. Furthermore, western blot analysis was used to examine the changes in protein expression. Results: The results demonstrated that these Shh/Gli1 pathway members were upregulated in GC tissues, and that Gli1 upregulation was associated with tumor progression and a poor prognosis. Gli1 expression was negatively associated with E-cadherin (E-Cad) expression, and positively with Vimentin (VIM) expression in GC specimens. Further analysis revealed that when the Shh/Gli1 pathway was activated, the migratory and invasive abilities of GC cells were enhanced, and the expression levels of Gli1 and VIM were increased, while E-Cad expression was decreased. Opposite results were observed when the Shh/Gli1 pathway was blocked by GANT61. Conclusions: The present study indicated that the Shh/Gli1 pathway exhibits an abnormal activation pattern in GC with possible predictive and prognostic significance. The Shh/Gli1 pathway may promote the migratory and invasive potential of GC cells by inducing EMT. The Shh/Gli1 pathway can thus be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bin Ke
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Xiao-Na Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Ning Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Xue-Jun Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Ru-Peng Zhang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| |
Collapse
|
15
|
Hao L, Liu MW, Gu ST, Huang X, Deng H, Wang X. Sedum sarmentosum Bunge extract ameliorates lipopolysaccharide- and D-galactosamine-induced acute liver injury by attenuating the hedgehog signaling pathway via regulation of miR-124 expression. BMC Complement Med Ther 2020; 20:88. [PMID: 32178661 PMCID: PMC7076998 DOI: 10.1186/s12906-020-2873-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Sedum sarmentosum is traditionally used to treat various inflammatory diseases in China. It has protective effects against acute liver injury, but the exact mechanism of such effects remains unclear. This study investigated the protective effects of S. sarmentosum extract on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury in mice and the mechanism of such effects. Methods Mice were randomly divided into control, treatment, model, and model treatment groups. Acute liver injury was induced in model mice via intraperitoneal injection of LPS and D-GalN with doses of 10 μg/kg of LPS and 500 mg/kg, respectively. The mRNA expression levels of miR-124, Hedgehog, Patched (Ptch), Smoothened (Smo), and glioma-associated oncogene homolog (Gli) in liver tissues were determined through RT-PCR, and the protein levels of Hedgehog, Ptch, Smo, Gli, P13k, Akt, HMGB1, TLR4, IkB-α, p-IkB-α, and NF-kB65 were evaluated via Western blot analysis. The serum levels of IL-6, TNF-α, CRP, IL-12, and ICAM-1 were determined via ELISA. TLR4 and NF-κBp65 activity and the levels of DNA-bound NF-KB65 and TLR4 in LPS/D-GalN-induced liver tissues were also determined. We recorded the time of death, plotted the survival curve, and calculated the liver index. We then observed the pathological changes in liver tissue and detected the levels of liver enzymes (alanine aminotransferase [ALT] and aspartate transaminase [AST]) in the serum and myeloperoxidase (MPO) and plasma inflammatory factors in the liver homogenate. Afterward, we evaluated the protective effects of S. sarmentosum extracts on acute liver injury in mice. Results Results showed that after S. sarmentosum extract was administered, the expression level of miR-124 increased in liver tissues. However, the protein expression levels of Hedgehog, Ptch, Smo, Gli, P13k, p-Akt, HMGB1, TLR4, p-IκB-α, and NF-κB65 and the mRNA expression levels of Hedgehog, Ptch, Smo, and Gli decreased. The MPO level in the liver, the IL-6, TNF-α, CRP, IL-12, and MMP-9 levels in the plasma, and the serum ALT and AST levels also decreased, thereby reducing LPS/D-GalN-induced liver injury and improving the survival rate of liver-damaged animals within 24 h. Conclusions S. sarmentosum extract can alleviate LPS/D-GalN-induced acute liver injury in mice and improve the survival rate of mice. The mechanism may be related to the increase in miR-124 expression, decrease in Hedgehog and HMGB1 signaling pathway activities, and reduction in inflammatory responses in the liver. Hedgehog is a regulatory target for miR-124.
Collapse
Affiliation(s)
- Li Hao
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Ming-Wei Liu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wu Hua District, Kunming, 650032, China
| | - Song-Tao Gu
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Xue Huang
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Hong Deng
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Xu Wang
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China.
| |
Collapse
|
16
|
Wu Z, Liu R, Miao X, Li D, Zou Q, Yuan Y, Yang Z. Prognostic and clinicopathological significance of Hapto and Gremlin1 expression in extrahepatic cholangiocarcinoma. J Cancer 2020; 11:199-207. [PMID: 31892986 PMCID: PMC6930392 DOI: 10.7150/jca.36886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Some studies have demonstrated that Hapto and Gremlin1 play an important biological role in many neoplasms. However, the role of Hapto and Gremlin1 in extrahepatic cholangiocarcinoma (ECC) remains to be revealed. Thus, this study investigated the prognostic and clinicopathological significance of Hapto and Gremlin1 expression in ECC. Methods: We examined Hapto and Gremlin1 expression in 100 ECC, 30 peritumoral tissues, 10 adenoma and 15 normal biliary tract tissues using EnVision immunohistochemistry. The relationship between Hapto and Gremlin 1 expression and clinicopathological parameters was evaluated using the χ2 test or Fisher's exact test. The overall survival of patients was analyzed using Kaplan-Meier univariate survival analysis and log-rank tests. Results: Hapto and Gremlin1 proteins were overexpressed in ECC compared to peritumoral tissues, adenoma, and normal biliary tract (P<0.05 or P<0.01). The positive rate of Hapto and Gremlin1 expression was significantly higher in cases with poor differentiation, lymph node metastasis, invasion of surrounding tissues and organs, a tumor-node-metastasis (TNM) stage of III or IV and no resection. Kaplan-Meier survival analysis showed that ECC patients with positive Hapto and/or Gremlin1 expression survived significantly shorter than patients with negative Hapto and/or Gremlin1 expression. Cox multivariate analysis revealed that positive Hapto and Gremlin1 expression were independent poor prognostic factors in ECC patients. Conclusion: The present study indicated that positive Hapto and/or Gremlin1 expression are closely associated with the pathogenesis, clinical, pathological and biological behaviors, and poor prognosis in ECC.
Collapse
Affiliation(s)
- Zhengchun Wu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rushi Liu
- School of Medicine. Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|