1
|
Mathur A, Singh A, Hussain Y, Mishra A, Meena A, Mishra N, Luqman S. Regulating pri/pre-microRNA up/down expressed in cancer proliferation, angiogenesis and metastasis using selected potent triterpenoids. Int J Biol Macromol 2024; 257:127945. [PMID: 37951434 DOI: 10.1016/j.ijbiomac.2023.127945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akanksha Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Ding Y, Ning Y, Kang H, Yuan Y, Lin K, Wang C, Yi Y, He J, Li L, He X, Chang Y. ZMIZ2 facilitates hepatocellular carcinoma progression via LEF1 mediated activation of Wnt/β-catenin pathway. Exp Hematol Oncol 2024; 13:5. [PMID: 38254216 PMCID: PMC10802047 DOI: 10.1186/s40164-024-00475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies with a high lethality rate. ZMIZ2 is a transcriptional co-activator implicated in various human diseases. However, the role and molecular mechanism of ZMIZ2 in HCC remains to be elucidated. METHODS The expression and prognostic value of ZMIZ2 in HCC was excavated from public databases and explored by bioinformatic analysis. Then the expression of ZMIZ2 and related genes was further validated by quantitative RT-PCR, western blotting, and immunohistochemistry. Loss and gain-of-function experiments were performed in vitro and in vivo to investigate the function of ZMIZ2 in HCC. In addition, transcriptome sequencing and immunoprecipitation was conducted to explore the potential molecular mechanisms of ZMIZ2. RESULTS ZMIZ2 was highly expressed in HCC and associated with poor prognosis. Silencing ZMIZ2 significantly inhibited HCC cell proliferation, cell cycle process, migration, and invasion in vitro, and also inhibited the progression of HCC in vivo. Additionally, ZMIZ2 expression was correlated with immune cell infiltration in HCC samples. Somatic mutation analysis showed that ZMIZ2 and TP53 mutations jointly affected the progression of HCC. Mechanistically, ZMIZ2 interacted with LEF1 to regulate malignant progression of HCC by activating the Wnt/β-catenin pathway. CONCLUSION ZMIZ2 was overexpressed in HCC and associated with poor prognosis. The overexpression of ZMIZ2 was corelated with malignant phenotype, and it facilitated HCC progression via LEF1-mediated activation of the Wnt/β-catenin pathway. Furthermore, ZMIZ2 could be served as a prognostic biomarker and a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Yuan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianghua He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lurao Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
MiR-300 Alleviates Cell Proliferation and Migration and Facilitates Cell Apoptosis by Targeting c-Met in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6167554. [PMID: 35419054 PMCID: PMC9001127 DOI: 10.1155/2022/6167554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
c-Met is a potent oncogene, whose aberrant activation has not been fully clarified. In this study, we discover the biological function of miR-300 in gastric cancer (GC) carcinogenesis and the underlying mechanism. The overexpression, oncogenic functions, and survival analysis of c-Met in GC tissues and cells were firstly determined. miRNAs that potentially targets c-Met were then predicted by bioinformatics. The expression levels of candidate miR-300 in GC tissue pairs were investigated. Pearson analysis revealed a negative relation between miR-300 and c-Met expressions. miR-300 and c-Met expression levels were determined in three GC cell lines (MKN-45, SGC-7901, and AGS) as well. Reduced miR-300 led to increase c-Met levels. Luciferase report assay demonstrated a direct binding site of miR-300 in the 3' untranslated region (3′UTR) of c-Met. Finally, the regulatory role of miR-300 on MKN-45 cells was studied by cell proliferation, migration, and apoptosis assays. Overexpression of miR-300 attenuated viability and migration and accelerated apoptosis in MKN-45. We also induced a rescue experiment with c-Met overexpression plasmid and finally proved that miR-300 exerted a suppressing role on MKN-45 proliferation and migration but promoted MKN-45 apoptosis by directly inhibiting c-Met. This study provides a novel insight into the targeted drug development for GC therapies.
Collapse
|
4
|
Identification of a Novel Metastasis-Related miRNAs-Based Signature for Predicting the Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6629633. [PMID: 33603784 PMCID: PMC7870303 DOI: 10.1155/2021/6629633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common internal malignancies worldwide and is associated with a poor prognosis. Abnormal expression of miRNAs is believed to play a role in the recurrent metastasis of HCC. However, limited studies on the role of miRNAs in HCC metastasis have been carried out. Therefore, this study is aimed at exploring the potential value of metastasis-related miRNAs (MRMs) in HCC. We retrieved MRMs were from the Human Cancer Metastasis Database. Differential miRNAs were identified for tumor samples of HCC patients and normal samples based on the TCGA database. Further, univariate and multivariate Cox regression analyses were used to screen MRMs known to be independent prognostic factors in HCC. These MRMs were then used to build a prognostic signature. All patients were classified into high-risk and low-risk groups based on the median of the signature scores. Moreover, GO and KEGG pathway enrichment analyses were performed to predict the function of these MRMs. Finally, a nomogram was constructed to predict the OS of patients at 1, 2, and 3 years. In our study, a total of seven prognostic MRMs (miR-140-3p, miR-9-5p, miR-942-5p, miR-324-3p, miR-29c-5p, miR-551a, and miR-149-5p) were identified and used for constructing the prognostic signature based on the training cohort. Patients in the low-risk HCC group showed better overall survival (OS) than those in the high-risk group. The results were validated using the validation cohort. In summary, the findings of this study provide evidence that MRMs-based prognostic signature is an independent biomarker in the prognosis of HCC patients.
Collapse
|
5
|
Zhou TH, Su JZ, Qin R, Chen X, Ju GD, Miao S. Prognostic and Predictive Value of a 15 Transcription Factors (TFs) Panel for Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:12349-12361. [PMID: 33293862 PMCID: PMC7719121 DOI: 10.2147/cmar.s279194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most devastating diseases worldwide. Limited performance of clinicopathologic parameters as prognostic factors underscores more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of HCC. The aim of the present study was to establish a novel panel to improve prognosis prediction of HCC patients, with a particular interest in transcription factors (TFs). Materials and Methods A TF-related prognosis model of liver cancer with data from ICGC-LIRP-JI cohort successively were processed by univariate and multivariate Cox regression analysis. Then, for evaluating the prognostic prediction value of the model, receiver operating characteristic (ROC) curve and survival analysis were performed both with internal data from the International Cancer Genome Consortium (ICGC) and external data from The Cancer Genome Atlas (TCGA). Furthermore, we verified the expression of three genes in HCC cell lines by Western blot and qPCR and protein expression level by IHC in liver cancer patients’ sample. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict liver cancer patient survival probability with TCGA cohort. Results By Cox regression analysis, a panel of 15 TFs (ZNF331, MYCN, AHRR, LEF1, ZNF780A, POU1F1, DLX5, ZNF775, PLSCR1, FOXK1, TAL2, ZNF558, SOX9, TCFL5, GSC) was identified to present with powerful predictive performance for overall survival of HCC patients based on internal ICGC cohort and external TCGA cohort. A nomogram that integrates these factors was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. Conclusion The 15-TF panel is an independent prognostic factor for HCC, and 15 TF-based nomogram might provide implication an effective approach for HCC patient management and treatment.
Collapse
Affiliation(s)
- Tian-Hao Zhou
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Jing-Zhi Su
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Rui Qin
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, People's Republic of China
| | - Xi Chen
- Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250000, People's Republic of China
| | - Gao-Da Ju
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing 102206, People's Republic of China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Dou L, Qin Y, Yang H, Yan P. OIP5-AS1 contributes to tumorigenesis in hepatocellular carcinoma by miR-300/YY1-activated WNT pathway. Cancer Cell Int 2020; 20:440. [PMID: 32943988 PMCID: PMC7487829 DOI: 10.1186/s12935-020-01467-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Background It has reported that long non-coding RNAs (lncRNAs) exerted regulatory functions by targeting specific genes through a competing endogenous RNA (ceRNA) pathway. LncRNA OIP5-AS1 has been identified as a tumor-enhancer in several tumor types. Nonetheless, its molecular mechanism in HCC remains to be masked. Aim of the study This study was aimed at exploring whether and how OIP5-AS1 exert functions in HCC. Methods qRT-PCR and western blot were employed for detecting gene expression. CCK-8, colony formation and EdU assays were implemented to evaluate the proliferative ability of HCC cells. Caspase-3 activity and flow cytometry analyses were implemented to determine cell apoptosis and cell cycle distribution. RNA pull down, ChIP, RIP and luciferase reporter assays explored the interplays between molecules. Results YY1 was upregulated in HCC cells, and silenced YY1 restrained HCC cell proliferation in vitro and hampered tumor growth in vivo. Later, we discovered that miR-300 could regulate WNT pathway via targeting YY1. Furthermore, OIP5-AS1 was identified as the sponge of miR-300 and promoted cell growth in HCC. Importantly, YY1 transcriptionally activate OIP5-AS1 in turn. Rescue experiments indicated that miR-300 inhibition or YY1 overexpression abrogated the inhibitive effect of OIP5-AS1 silencing on the malignant growth of HCC cells. Conclusions OIP5-AS1/miR-300/YY1 feedback loop facilitates cell growth in HCC by activating WNT pathway.
Collapse
Affiliation(s)
- Yu Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 Hubei China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 Hubei China
| | - Lei Dou
- Department of Geratology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yun Qin
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan, 430030 Hubei China
| | - Huiyuan Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Peng Yan
- Department of Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
7
|
Zhang B, Huang L, Tu J, Wu T. Hypoxia-Induced Placenta-Specific microRNA (miR-512-3p) Promotes Hepatocellular Carcinoma Progression by Targeting Large Tumor Suppressor Kinase 2. Onco Targets Ther 2020; 13:6073-6083. [PMID: 32612368 PMCID: PMC7323795 DOI: 10.2147/ott.s254612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Sustained proliferation and active metastasis are hallmarks of cancer, and they pose major challenges to the development of treatments and a cure for hepatocellular carcinoma (HCC). Thus, the mechanisms of proliferation, migration, and invasion of cancer cells need to be investigated. Many studies indicate that dysregulation of microRNA plays important roles in the progression of HCC, but the role of placenta-specific microRNA (miR-512-3p) in HCC has not been systematically investigated. Purpose In the current study, the expression, biological function, and mechanisms of miR-512-3p involvement in HCC were investigated. Methods Real-time quantitative polymerase chain reaction assays were conducted to determine miR-512-3p levels in HCC tissues and cell lines. The StarBase V3.0 online platform was used to compare miR-512-3p levels in HCC tissues with TCGA data and to identify potential miR-512-3p target genes. Associations between miR-512-3p and clinicopathological characteristics were analyzed statistically. MTT, ethynyl deoxyuridine, and transwell assays were performed to assess cell viability, proliferation, migration, and invasion. The luciferase reporter gene assay was used to verify target genes. Recuse assays were performed to confirm whether large tumor suppressor kinase 2 (LATS2) participated in the regulatory effects of miR-512-3p on HCC cell proliferation and motility, and whether miR-512-3p mediated the tumor-promoting effects of hypoxia. Results miR-512-3p was upregulated in HCC and it was associated with worse survival and unfavorable clinicopathological characteristics. Functional assays indicated that miR-512-3p contributed to HCC cell proliferation, migration, and invasion. Mechanistically, LATS2—a downstream target of miR-512-3p—mediated the tumor-promoting effects of miR-512-3p in HCC. Hypoxia could elevate miR-512-3p levels in HCC cells, and miR-512-3p partially mediated the tumor-promoting effects of hypoxia. Conclusion Hypoxia-induced miR-512-3p contributes to HCC cell proliferation, migration, and invasion by targeting LATS2 and inhibiting the Hippo/yes-associated protein 1 pathways.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Clinical Medicine, Queen Mary Institute, Nanchang University, Nanchang, Jiangxi Province 330000, People's Republic of China
| | - Liang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jiangbo Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Tianming Wu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
8
|
miR-300 mitigates cancer-induced bone pain through targeting HMGB1 in rat models. Genes Genomics 2019; 42:309-316. [PMID: 31872385 DOI: 10.1007/s13258-019-00904-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is the pain caused by bone metastasis from malignant tumors, and the largest source of pain for cancer patients. miR-300 is an important miRNA in cancer. It has been shown that miR-300 regulates tumorigenesis of various tumors. OBJECTIVE This study aims to investigate the role of miR-300 in CIBP and its underlying molecular mechanisms in vitro and in vivo. METHODS We constructed CIBP model in rats and investigated the mechanism through which miR-300 affects CIBP. We first examined expression level of miR-300 in CIBP rats and then tested the effect of its overexpression. Next, we identified the target of miR-300 using TargetScan analysis and double luciferase assay. Finally, we studied genetic interactions between miR-300 and its target and their roles in CIBP. RESULTS We found that miR-300 was downregulated in CIBP rats. Overexpression of miR-300 significantly attenuated cancer-induced neuropathic pain (p < 0.01). Furthermore, TargetScan analysis and double luciferase assay show High Mobility Group Box 1 (HMGB1) is a target of miR-300. Notably, HMGB1 is overexpressed in CIBP rats, while up-regulation of miR-300 significantly suppresses expression of HMGB1 (p < 0.01). Moreover, knockdown of HMGB1 by siRNA significantly relieves cancer-induced neuropathic pain in rats (p < 0.01). On the other hand, HMGB1 overexpression partially blocked the effect of miR-300 on cancer-induced nerve pain. CONCLUSION miR-300 relieves cancer-induced neuropathic pain by inhibiting HMGB1 expression. These results may be beneficial for the treatment of CIBP in clinical practice.
Collapse
|