1
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Peng Y, Xiong R, Wang B, Chen X, Ning Y, Zhao Y, Yang N, Zhang J, Li C, Zhou Y, Li P. The Essential Role of Angiogenesis in Adenosine 2A Receptor Deficiency-mediated Impairment of Wound Healing Involving c-Ski via the ERK/CREB Pathways. Int J Biol Sci 2024; 20:4532-4550. [PMID: 39247808 PMCID: PMC11380447 DOI: 10.7150/ijbs.98856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Renping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Jing Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| |
Collapse
|
3
|
Chen CJ, Yin JF, Zhang HX, Ma QW, Zhao X, Chen M, Peng DY. Proximal Femoral Metastasis From Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma Mimicking Osteosarcoma on Magnetic Resonance Imaging. World J Oncol 2024; 15:731-735. [PMID: 38993247 PMCID: PMC11236371 DOI: 10.14740/wjon1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
The aggressive nature of lung cancer is frequently accompanied by a high incidence of bone metastasis; however, proximal femoral metastasis from lung cancer is comparatively uncommon when compared to other malignancies. In this report, we present the case of a 53-year-old Asian male who presented with pain in the left thigh and back. Magnetic resonance imaging revealed severe bone destruction with involvement of adjacent soft tissue mass at the left thigh, exhibiting imaging findings that mimic osteosarcoma. Subsequent bone biopsy confirmed the diagnosis of epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma with bone metastasis. The patient achieved survival following administration of osimertinib and underwent surgery for femoral metastases without palliative surgery for lung cancer. Therefore, proximal femoral metastasis from EGFR-mutated lung adenocarcinoma should be considered as a differential diagnosis in patients suspected to have osteosarcoma. The imaging findings of proximal femoral metastasis from EGFR-mutated lung adenocarcinoma were presented, and their therapeutic management was discussed.
Collapse
Affiliation(s)
- Chang Jun Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
- These two authors contributed equally to this work
| | - Jun Feng Yin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
- These two authors contributed equally to this work
| | - Hao Xuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Qing Wei Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xin Zhao
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Da Yong Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
4
|
Xiong A, Xiong R, Luo F. Ski ameliorates synovial cell inflammation in monosodium iodoacetate-induced knee osteoarthritis. Heliyon 2024; 10:e24471. [PMID: 38298665 PMCID: PMC10827772 DOI: 10.1016/j.heliyon.2024.e24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases and is characterized by cartilage degeneration, synovial inflammation, joint stiffness and even loss of motor function. In the clinical treatment of arthritis, conventional analgesic and anti-inflammatory drugs have great side effects. We have evaluated the possibility of the endogenous transcription regulator Ski as an anti-inflammatory alternative in OA through experimental studies in animal models and in vivo and in vitro. Male Sprague‒Dawley rats were injected with monosodium iodoacetate (MIA) into the knee joints to induce symptoms identical to those of human OA. We isolated knee synovial tissue under sterile conditions and cultured primary synovial cells. In vitro, Ski inhibits the proinflammatory factors IL-1β, IL-6 and TNF-α mRNA and protein expression in lipopolysaccharide (LPS)-stimulated fibroblast-like synoviocytes (FLSs) and U-937 cells. In addition, Ski attenuates or inhibits OA-induced synovial inflammation by upregulating the protein expression of the anti-inflammatory factor IL-4 and downregulating the protein expression of downstream molecules related to the NF-κB inflammatory signaling pathway. In vivo, Ski downregulated proinflammatory factors and p-NF-κB p65 in KOA synovial tissue and alleviated pain-related behaviors in KOA rats. These experimental data show that Ski has strong anti-inflammatory activity. Ski is an endogenous factor, and if used in the clinical treatment of OA, the side effects are small. However, the anti-inflammatory mechanism of Ski must be further studied.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Renping Xiong
- Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
6
|
Sun B, Huang Z, Yang H, Zhao X. MicroRNA-195-5p inhibits the progression of hemangioma via targeting SKI. Exp Ther Med 2022; 23:165. [PMID: 35069846 PMCID: PMC8753966 DOI: 10.3892/etm.2021.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/16/2021] [Indexed: 11/06/2022] Open
Abstract
Hemangioma (HA), which is characterized by aberrant endothelial cell proliferation in blood vessels, is a common tumor during infancy. MicroRNAs (miRNAs/miRs) collectively participate in the development of HA; however, the potential roles of miR-195-5p in HA are not completely understood. The aim of the present study was to investigate the roles of miR-195-5p in HA. In the present study, miR-195-5p was found to be downregulated in HA cells, such as the XPTS-1 human infantile hemangioma-derived endothelial cell line and the EOMA hemangioendothelioma cell line. Overexpression of miR-195-5p was shown to suppress HA cell viability, colony formation and proliferation, and induced HA cell apoptosis. Furthermore, miR-195-5p downregulated Bcl-2 expression and upregulated Bax and Bcl-2 expression levels. V-ski sarcoma viral oncogene homolog (SKI) was identified as a target of miR-195-5p. Co-transfection of miR-195-5p mimics and SKI 3'-untranslated region wild-type decreased HA cell luciferase activity. SKI overexpression alleviated the miR-195-5p-induced decrease in HA cell proliferation and increased HA cell apoptosis. In addition, the regulatory role of miR-195-5p on the expression of Bcl-2, Bax and poly(ADP-ribose) polymerase was reversed by SKI. Collectively, the results of the present study demonstrated that miR-195-5p suppressed HA progression and its effects were mediated via SKI. Therefore, the miR-195-5p/SKI axis may represent a novel therapeutic target for HA.
Collapse
Affiliation(s)
- Bin Sun
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
- School of Clinical Medicine, Guizhou Medical University; Key Laboratory of Endemic and Ethnic Diseases, Guiyang, Guizhou 550002, P.R. China
| | - Zhi Huang
- School of Basic Medical Science, Guizhou Medical University Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
- Institute of Image, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xuya Zhao
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
7
|
Ma K, Zhang C. HER4 Promotes Osteosarcoma Progression and Predicts Poor Prognosis through the PTEN-PI3K/AKT Pathway. J Cancer 2022; 13:290-303. [PMID: 34976190 PMCID: PMC8692681 DOI: 10.7150/jca.62787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
Studies have reported a relationship between human epidermal growth factor receptor 4 (HER4), a ubiquitously expressed and unique member of the ErbB family, and clinicopathological features of osteosarcoma. However, further investigation is warranted. HER4 expression was analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. The relationship between HER4 expression and the prognosis of patients with osteosarcoma was determined by constructing a Kaplan-Meier curve. Cell viability and proliferation were investigated by MTT and colony formation assays. The mechanism underlying HER4-modulated proliferation and invasion/migration of osteosarcoma cells was determined by short hairpin RNA (shRNA) interference, colony formation, migration, invasion, and western blotting experiments. Spheroid formation assay and CD133+ cell populations were used to examine HER4-induced stem-like traits. The present findings revealed that HER4 was overexpressed in both osteosarcoma cells and tissues. Moreover, this overexpression was associated with high Enneking stage, metastasis, and recurrence. Sh-HER4 showed obviously suppressed cell viability, colony formation, and invasion/migration. In addition, knockdown of HER4 markedly attenuated the spheroid size and proportion of CD133-positive cells, as well as the expression of stemness markers. Sh-HER4 also reduced the tumor size, downregulated the expression of phosphorylated-PI3K (p-PI3K) and p-AKT, and increased that of p-phosphatase and tensin homolog (p-PTEN) in mouse tissue. From a mechanistic perspective, HER4 knockdown activated p-PTEN and suppressed p-PI3K and p-AKT expression. HER4 promoted osteosarcoma progression through inactivation of the PTEN-PI3K/AKT pathway. Taken together, the results indicate that HER4 represents a novel target in osteosarcoma progression and stemness modulation, and may be of value for the development of treatments against osteosarcoma.
Collapse
Affiliation(s)
- Kun Ma
- ✉ Corresponding author: Kun Ma, Luoyang Orthopaedic-Traumatological Hospital & Orthopaedic Hospital of Henan Province, 82 QiMing Road, Luoyang, Henan 471002, China E-mail:
| | | |
Collapse
|
8
|
Peng Y, Xiong RP, Zhang ZH, Ning YL, Zhao Y, Tan SW, Zhou YG, Li P. Ski promotes proliferation and inhibits apoptosis in fibroblasts under high-glucose conditions via the FoxO1 pathway. Cell Prolif 2020; 54:e12971. [PMID: 33349993 PMCID: PMC7849170 DOI: 10.1111/cpr.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions. MATERIALS AND METHODS The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small-interfering RNA. RESULTS The present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG-induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1-mediated deacetylation. CONCLUSIONS Therefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhuo-Hang Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|