1
|
Zhao X, Wang Y, Meng F, Liu Z, Xu B. Risk Stratification and Validation of Eleven Autophagy-Related lncRNAs for Esophageal Squamous Cell Carcinoma. Front Genet 2022; 13:894990. [PMID: 35832188 PMCID: PMC9271611 DOI: 10.3389/fgene.2022.894990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the most prevalent subtype of esophageal cancer, ranks sixth in cancer-related mortality, making it one of the deadliest cancers worldwide. The identification of potential risk factors for ESCC might help in implementing precision therapies. Autophagy-related lncRNAs are a group of non-coding RNAs that perform critical functions in the tumor immune microenvironment and therapeutic response. Therefore, we aimed to establish a risk model composed of autophagy-related lncRNAs that can serve as a potential biomarker for ESCC risk stratification. Using the RNA expression profile from 179 patients in the GSE53622 and GSE53624 datasets, we found 11 lncRNAs (AC004690.2, AC092159.3, AC093627.4, AL078604.2, BDNF-AS, HAND2-AS1, LINC00410, LINC00588, PSMD6-AS2, ZEB1-AS1, and LINC02586) that were co-expressed with autophagy genes and were independent prognostic factors in multivariate Cox regression analysis. The risk model was constructed using these autophagy-related lncRNAs, and the area under the receiver operating characteristic curve (AUC) of the risk model was 0.728. To confirm that the model is reliable, the data of 174 patients from The Cancer Genome Atlas (TCGA) esophageal cancer dataset were analyzed as the testing set. A nomogram for ESCC prognosis was developed using the risk model and clinic-pathological characteristics. Immune function annotation and tumor mutational burden of the two risk groups were analyzed and the high-risk group displayed higher sensitivity in chemotherapy and immunotherapy. Expression of differentially expressed lncRNAs were further validated in human normal esophageal cells and esophageal cancer cells. The constructed lncRNA risk model provides a useful tool for stratifying risk and predicting the prognosis of patients with ESCC, and might provide novel targets for ESCC treatment.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yulun Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Zhuang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
- Center for Intelligent Oncology, Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, China
- *Correspondence: Bo Xu,
| |
Collapse
|
2
|
Wu Y, Hayat K, Hu Y, Yang J. Long Non-Coding RNAs as Molecular Biomarkers in Cholangiocarcinoma. Front Cell Dev Biol 2022; 10:890605. [PMID: 35573683 PMCID: PMC9093656 DOI: 10.3389/fcell.2022.890605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary system cancer that has the characteristics of strong invasiveness, poor prognosis, and few therapy choices. Furthermore, the absence of precise biomarkers for early identification and prognosis makes it hard to intervene in the early phase of initial diagnosis or recurring cholangiocarcinoma following surgery. Encouragingly, previous studies found that long non-coding RNA (lncRNA), a subgroup of RNA that is more than 200 nucleotides long, can affect cell proliferation, migration, apoptosis, and even drug resistance by altering numerous signaling pathways, thus reaching pro-cancer or anti-cancer outcomes. This review will take a retrospective view of the recent investigations on the work of lncRNAs in cholangiocarcinoma progression and the potential of lncRNAs serving as promising clinical biomarkers and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khizar Hayat
- Department of Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianfeng Yang,
| |
Collapse
|
3
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:2166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
Affiliation(s)
| | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA;
| |
Collapse
|
4
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
5
|
Chen Y, Liu H, Zhang J, Wu Y, Zhou W, Cheng Z, Lou J, Zheng S, Bi X, Wang J, Guo W, Li F, Wang J, Zheng Y, Li J, Cheng S, Zeng Y, Liu J. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: a multicenter study from China. BMC Cancer 2021; 21:1299. [PMID: 34863147 PMCID: PMC8645153 DOI: 10.1186/s12885-021-09035-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At present, hepatectomy is still the most common and effective treatment method for intrahepatic cholangiocarcinoma (ICC) patients. However, the postoperative prognosis is poor. Therefore, the prognostic factors for these patients require further exploration. Whether microvascular invasion (MVI) plays a crucial role in the prognosis of ICC patients is still unclear. Moreover, few studies have focused on preoperative predictions of MVI in ICC patients. METHODS Clinicopathological data of 704 ICC patients after curative resection were retrospectively collected from 13 hospitals. Independent risk factors were identified by the Cox or logistic proportional hazards model. In addition, the survival curves of the MVI-positive and MVI-negative groups before and after matching were analyzed. Subsequently, 341 patients from a single center (Eastern Hepatobiliary Hospital) in the above multicenter retrospective cohort were used to construct a nomogram prediction model. Then, the model was evaluated by the index of concordance (C-Index) and the calibration curve. RESULTS After propensity score matching (PSM), Child-Pugh grade and MVI were independent risk factors for overall survival (OS) in ICC patients after curative resection. Major hepatectomy and MVI were independent risk factors for recurrence-free survival (RFS). The survival curves of OS and RFS before and after PSM in the MVI-positive groups were significantly different compared with those in the MVI-negative groups. Multivariate logistic regression results demonstrated that age, gamma-glutamyl transpeptidase (GGT), and preoperative image tumor number were independent risk factors for the occurrence of MVI. Furthermore, the prediction model in the form of a nomogram was constructed, which showed good prediction ability for both the training (C-index = 0.7622) and validation (C-index = 0.7591) groups, and the calibration curve showed good consistency with reality. CONCLUSION MVI is an independent risk factor for the prognosis of ICC patients after curative resection. Age, GGT, and preoperative image tumor number were independent risk factors for the occurrence of MVI in ICC patients. The prediction model constructed further showed good predictive ability in both the training and validation groups with good consistency with reality.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Jinyu Zhang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Yijun Wu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Weiping Zhou
- Department of Hepatobiliary Surgery III, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai, China
| | - Zhangjun Cheng
- Department of Hepatobiliary Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jianying Lou
- Department of Hepatobiliary Surgery, The Second Hospital Affiliated to Zhejiang University, Hangzhou, China
| | - Shuguo Zheng
- Department of Hepatobiliary Surgery, The Southwest Hospital Affiliated to the Army Medical University, Chongqing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianming Wang
- Department of Hepatobiliary Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Guo
- Department of Hepatobiliary Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Fuyu Li
- Department of Hepatobiliary Surgery, The West China Hospital of Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Hepatobiliary Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yamin Zheng
- Department of Hepatobiliary Surgery, Xuanwu Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Chuanbei Medical University, Nanchong, China
| | - Shi Cheng
- Department of Hepatobiliary Surgery, Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
- Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
| |
Collapse
|
6
|
Mu W, Guo L, Liu Y, Yang H, Ning S, Lv G. Long Noncoding RNA SNHG1 Regulates LMNB2 Expression by Sponging miR-326 and Promotes Cancer Growth in Hepatocellular Carcinoma. Front Oncol 2021; 11:784067. [PMID: 34917510 PMCID: PMC8670182 DOI: 10.3389/fonc.2021.784067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of the study is to explore the potential competing endogenous RNA (ceRNA) network and investigate the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in hepatocellular carcinoma (HCC) development. METHODS By analyzing the data of HCC in The Cancer Genome Atlas (TCGA) database, we included differentially expressed lncRNA and microRNA (miRNA) profiles and constructed ceRNA networks related to the prognosis of HCC patients. qRT-PCR, Western blotting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell assay, and the nude mouse model were employed to test the effects of SNHG1 and LMNB2 on tumor proliferation and growth in vitro and in vivo. RESULTS In the study, we identified 115 messenger RNAs (mRNAs), 12 lncRNAs, and 37 miRNAs by intersecting differentially expressed genes (DEGs) in TCGA and StarBase databases. Then, SNHG1-miR-326-LMNB2 pathway came into notice after further survival analysis and hub gene screening. Our results showed that SNHG1 expression was upregulated significantly in HCC tissues and cell lines. Downregulation of both LMNB2, the target of miR-326 in HCC, and SNHG1 inhibited tumor proliferation and growth in vitro and in vivo. Furthermore, SNHG1 could regulate LMNB2 expression through binding to miR-326 in HCC cell lines. CONCLUSION SNHG1 is a promising prognostic factor in HCC, and the SNHG1-miR-326-LMNB2 axis may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lingyu Guo
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Taian City Central Hospital of Shandong Province, Tai'an, China
| | - Hui Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shanglei Ning
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhang ZJ, Huang YP, Li XX, Liu ZT, Liu K, Deng XF, Xiong L, Zou H, Wen Y. A Novel Ferroptosis-Related 4-Gene Prognostic Signature for Cholangiocarcinoma and Photodynamic Therapy. Front Oncol 2021; 11:747445. [PMID: 34712611 PMCID: PMC8545875 DOI: 10.3389/fonc.2021.747445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma is the second most common malignant tumor in the hepatobiliary system. Compared with data on hepatocellular carcinoma, fewer public data and prognostic-related studies on cholangiocarcinoma are available, and effective prognostic prediction methods for cholangiocarcinoma are lacking. In recent years, ferroptosis has become an important subject of tumor research. Some studies have indicated that ferroptosis plays an important role in hepatobiliary cancers. However, the prediction of the prognostic effect of ferroptosis in patients with cholangiocarcinoma has not been reported. In addition, many reports have described the ability of photodynamic therapy (PDT), a potential therapy for cholangiocarcinoma, to regulate ferroptosis by generating reactive oxygen species (ROS). By constructing ferroptosis scores, the prognoses of patients with cholangiocarcinoma can be effectively predicted, and potential gene targets can be discovered to further enhance the efficacy of PDT. In this study, gene expression profiles and clinical information (TCGA, E-MTAB-6389, and GSE107943) of patients with cholangiocarcinoma were collected and divided into training sets and validation sets. Then, a model of the ferroptosis gene signature was constructed using least absolute shrinkage and selection operator (LASSO)-penalized Cox regression analysis. Furthermore, through the analysis of RNA-seq data after PDT treatment of cholangiocarcinoma, PDT-sensitive genes were obtained and verified by immunohistochemistry staining and Western blot. The results of this study provide new insight for predicting the prognosis of cholangiocarcinoma and screening target genes that enhance the efficacy of PDT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|